ACCEL BAS (AZMUTH BAS cBIN BAS BINOM-4 BAS) #BINOMIALBAS3 BINOMIALCOM<qLBINOMIALDOC #BINSTAR BASBBLAKHOLEBASJCOMPRESSBASCRAMERS3BASCRAMERS3COMNCRAMERS3DOC.zXCRAMERS3PRNFCUMPROBSBAS[FIBON BAS`HOLECALCBASb'HOLECALCCOM}_<HOLECALCDOC%vQHOLECALCPRN spHYPERBOLBAS!{LSTBIN BAS)ELSTBIN2 BAS0|LSTPOIS BAS5NORMAL BAS:4PARABOLABAS>PARABOLADOCE ~POIS BASN POISSON BASYPOISSON COM_W=_POISSON DOC POSITIONBASPOSITIONDOC QUADRATSBASQUADROOTBASQUADROOTCOMWmQUADROOTPRNV(0RISE-SETBASr GRISE-SETDOC SRISETIMEBAS|RISING BASbROOTS BASVSPHERIC BASSTARFIX BAS6*STARFIX COMKTIME BASQTIME FINTRANSIT BAS;UNIFMOT BAS^= 10 REM THIS PROGRAM CALCULATES THE ENERGIES AND WIRE LENGTH FACTORS FOR 20 REM A TUNED LINEAR ACCELERATOR. WRITTEN BY MIKE FINERTY 4-10-84 30 REM IN NEVADA BASIC 12 DIGIT PRECISSION 40 INPUT "STARTING ENERGY",S1 50 INPUT "ENDING ENERGY",S2 60 INPUT "NUMBER OF ACCELERATING STEPS",N 70 PRINT "AVERAGE ACCELERATING ENERGY ";(S2-S1)/N;" ELECTRON VOLTS" 80 FOR E=S1 TO S2 STEP (S2-S1)/N 90 LET C=2.99792458E8 100 LET E0=5.110041E5 110 LET B=4*(E/E0)^2*C^2 120 LET D=4*(E/E0)^2*C^4 130 LET A=1 140 LET V2=-B/2+(B^2+4*D)^.5/2 150 LET V=V2^.5 160 LPRINT "ENERGY","ELECTRON VELOCITY","V/C%" 170 LPRINT E,V,TAB(42);V/C*100 180 IF V=0 THEN 210 190 LPRINT "DELTA = ";C/V-INT(C/V) 200 LPRINT 210 NEXT %" 170 LPRINT E,V,TAB(42);V/C*100 180 IF V=0 THEN 210 190 LPRINT "DELTA = ";C/V-INT(C/V) 200 LPRINT b *** THIS IS PROGRAM FIXER.BAS A MBASIC PROGRAM TO CAULCULATE ***Xb ****************** ALTITUDE AND AZMUTH *************************b *** FROM LATITUDE, RIGHT ASCENTION, DECLINATION SIDERIAL ***b( ****************************TIME********************************%c2 *********ALL UNITS IN DECIMAL DEGREES OR HOURS *************lc< *** BY MIKE FINERTY ***********************22 AUGUST 1985 ******cF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%cPPI U–hIcZC1 U–hIcdC2 C1dn "LATITUDE IS: ", LATdxLAT LATC16d "RIGHT ASCENTION = ", RALdRA RA  C1hd "DECLINATION = ", DEC{dDEC DEC C1d "SIDEARIAL TIME = ", SIDTIMEdSIDTIME SIDTIME  C1dLHA SIDTIME RA eALTSIN (LAT)(DEC) (LAT)(DEC)(LHA),eALTCOS (ALTSIN)HeALT (ALTSINALTCOS)^eALTITUDE ALTC2eAZCOS ((DEC)(ALT)(LAT))((ALT)(LAT))eAZSIN (DEC)(LHA)(ALT)eAZ (AZSINAZCOS)eAZMUTH (AZC2)f" AZSIN  AZCOS  AZMUTH  AZMUTHLf, AZSIN  AZCOS  AZMUTH  AZMUTH~f1 AZSIN  AZCOS  AZMUTH h AZMUTHf@ "ALTITUDE = ";ALTITUDEfJ "AZMUTH = "; AZMUTHfT ALTITUDE  "OBJECT BELOW HORIZON" g^ "DO YOU WANT ANOTHER OBJECT? Y/N? "gh A$*gr A$ "Y"  AZMUTHfT ALTITUDE  10 LPRINT 20 LPRINT "PROGRAM BINPROBS: SINGLE TERMS OF THE BINOMIAL DISTRIBUTION" 30 REM N IS NUMBER OF TRIES 40 INPUT "N=",N 50 PRINT 60 LPRINT "N =";N 70 REM R IS NUMBER OF SUCCESSES 80 INPUT "R=",R 90 PRINT 100 LPRINT "R =";R 110 PRINT "RUNTIME =";.23*R;"seconds" 120 PRINT 130 REM THETA IS PROBABILITY OF SUCCESS PER TRY 140 INPUT "THETA =",T 150 LPRINT "THETA =";T 160 PRINT 170 PRINT "CALCULATIONS IN PROGRESS" 180 FOR X=1 TO R 190 LET Y=Y+LOG10(X) 200 NEXT X 210 LET M=N-R+1 220 FOR Z=M TO N 230 LET P=P+LOG10(Z) 240 NEXT Z 250 LET C=P-Y 260 LET S=1-T 270 LET Q=R*LOG10(T) 280 LET U=(N-R)*LOG10(S) 290 LET L=C+Q+U 300 PRINT "LOGPROB =";L 310 LPRINT "LOGPROB =";L 320 PRINT "probability =";10^(L-INT(L)+1);"ten";INT(L)-1 330 LPRINT "PROBABILITY =";10^(L-INT(L)+1);"TEN";INT(L)-1 340 LET G2=10-INT(LOG10(ABS(Y+Q+U)))-INT(LOG10(1.25*R)) 350 PRINT "CALCULATIONS GOOD TO ";G2;" DIGITS" 360 LPRINT "CALCULATIONS GOOD TO ";G2;" DIGITS" 370 PRINT "--oo000oo--" 380 LPRINT "--oo000oo--" 390 PRINT 400 LPRINT 410 END ATIONS GOOD TO ";G2;" DIGITS" 370 PRINT "--oo000oo--" 380 LPRINT "--oo000oo--" 390 PRINT 400 LPRINT 410 END 10 REM: NEVADA BASIC 12 DIGIT PRECISSION PROGRAM 20 LPRINT "PROGRAM BINPROBS: SINGLE TERMS OF THE BINOMIAL DISTRIBUTION" 30 REM N IS NUMBER OF TRIES 40 INPUT "N=",N 50 PRINT 60 LPRINT "N =";N 70 REM R IS NUMBER OF SUCCESSES 80 INPUT "R=",R 90 PRINT 100 LPRINT "R =";R 110 PRINT "RUNTIME =";.23*R;"seconds" 120 PRINT 130 REM THETA IS PROBABILITY OF SUCCESS PER TRY 140 INPUT "THETA =",T 150 LPRINT "THETA =";T 160 PRINT 170 PRINT "CALCULATIONS IN PROGRESS" 180 FOR X=1 TO R 190 LET Y=Y+LOG10(X) 200 NEXT X 210 LET M=N-R+1 220 FOR Z=M TO N 230 LET P=P+LOG10(Z) 240 NEXT Z 250 LET C=P-Y 260 LET S=1-T 270 LET Q=R*LOG10(T) 280 LET U=(N-R)*LOG10(S) 290 LET L=C+Q+U 300 PRINT "LOGPROB =";L,"H = ";-L/N/LOG10(4) 310 LPRINT "LOGPROB =";L,"H = ";-L/N/LOG10(4) 320 PRINT "probability =";10^(L-INT(L)+1);"ten";INT(L)-1 330 LPRINT "PROBABILITY =";10^(L-INT(L)+1);"TEN";INT(L)-1 340 LET G2=10-INT(LOG10(ABS(L)))-INT(LOG10(1.25*R)) 350 PRINT "CALCULATIONS GOOD TO ";G2;" DIGITS" 360 LPRINT "CALCULATIONS GOOD TO ";G2;" DIGITS" 370 PRINT "--oo000oo--" 380 LPRINT "--oo000oo--" 390 PRINT 400 LPRINT 410 END ATIONS GOOD TO ";G2;" DIGITS" 370 PRINT "--oo010 VAR A,B,LOGPROB,LOG_NCR,N,R,T,X,M,Z,P,Y,Q,U,S =REAL.DOUBLE 15 VAR C$ = STRING 20 INPUT "N = ";N 30 LPRINTER 40 PRINT "N = ";N 45 CONSOLE 50 INPUT "R = ";R 60 LPRINTER 70 PRINT "R = ";R 80 CONSOLE 90 PRINT "RUNTIME = "; 0.4*R;"SECONDS" 100 INPUT "THETA =";T 110 LPRINTER 120 PRINT "THETA =";T 130 CONSOLE 140 PRINT "CALCULATIONS IN PROGRESS" 150 FOR X = 1 TO R 160 Y = Y + LOG(X)/LOG(10) 170 NEXT X 180 M = N - R + 1 190 FOR Z = M TO N 200 P = P + LOG(Z)/LOG(10) 210 NEXT Z 220 LOG_NCR = P - Y 230 S = 1 - T 240 Q = R*LOG(T)/LOG(10) 250 U = (N - R)*LOG(S)/LOG(10) 260 LOGPROB = LOG_NCR + Q + U 270 PRINT 280 LPRINTER 290 PRINT 295 PRINT "LOGPROB =";LOGPROB 300 CONSOLE 310 PRINT 315 PRINT "LOGPROB=";LOGPROB 320 A = 10^(LOGPROB - INT(LOGPROB)) 330 B = INT(LOGPROB) 340 C$= "PROBABILITY = #.## TEN +#####" 350 PRINT USING C$,A,B 360 LPRINTER 370 PRINT USING C$,A,B 380 PRINT "--ooO0Ooo--" 390 PRINT 400 PRINT 410 CONSOLE 420 PRINT "--ooO0Ooo--" 430 PRINT 440 PRINT 450 END A,B,LOGPROB,LOG_NCR,N,R,T,X,M,Z,P,Y,Q,U,S =REAL.DOUBLE 15 VAR C$ = STRING 20 INPUT "N = ";N 30 LPRINTER 40 PRINT "N =%g9g9*ʹ>1>1>1>1>1>132B2.N = B2C/B2yb-!8=%B2yc2>1>1>1>132ÚN = !+68͂B2c2>1>1>1>132B2.R = B2C/B2yb-!8=%B2yc2>1>1>1 >1 32!R = !+68͂B2c2>1>1>1>132f RUNTIME = ![+tͿ6p68ͮ!"1ÒSECONDS!+B2c2>1>132B2.THETA =B2C/B2yb-!8=%B2yc2>1>1>1>132 THETA =!+68͂B2c2>1>1>1>132\CALCULATIONS IN PROGRESS!C+B2c2>1>1Á6z>!826'268ä!>͞6>1>16868ͮ ̀Ϳ6 ̀*l'>!86>1>1!% >1 >1 6868q'6l'>!86>1!>1!68>!826'268g!`>͞6>1">1"Ä6868ͮ ̀Ϳ6 ̀*l'>!86>1#>1#!o% >1$>1$6868q'>!86>1%>1%668q'>!96>1&>1&)6868ͮ ̀ͤ(Ϳ6% ̀*>!96>1'>1'j6868q'69ͮ ̀ͤ(Ϳ6f ̀*>!96>1(>1(6869l'69l'>!86>1)>1)32B2c2>10>10>11>1132B2c2>12>1232, LOGPROB =!"+68͂B2c2>13>13>14>1432B2c2>15>1532ÉLOGPROB=!+68͂B2c2>16>16ö66868ͮ{̀q'Ͱ >!86>17>1768ͮ{̀>!86>18>18/PROBABILITY = #.## TEN +#####!!92>19>19!9>K/3268͂68͂>K/B2c2>1@>1@>1A>1A!9>K/3268͂68͂>K/B2c2>1B>1B32 --ooO0Ooo--!+B2c2>1C>1C32B2c2>1D>1D32B2c2>1E>1E>1F>1F32X --ooO0Ooo--!L+B2c2>1G>1G32B2c2>1H>1H32B2c2>1I>1I>1QCopyright (C) 1979, By Topaz programming. All rights reserved. From here on protected by End User License.  " " ! >6! >6" >͞6! >͞6l'* >6! >͞6* >͞6:  ڎ * ! >͞6! >͞6!* >͞6! >͞6q'* >6!v v Î "W ![ >6!"Y :\ = :^ = ![ >͞6! >͞6V $ *Y #"Y ![ >͞6! >͞6l#![ >6 *Y |g ![ >͞6! >͞6V g *Y +"Y ![ >͞6! >͞6!"![ >6, ![ >͞6̀-!y=}  >͞6![ >͞6![ >͞6ͱl#! >͞6 ![ >6!` >͞6!d >͞6!h >͞6!l >͞6!p >͞6!t >͞6!x >͞6!| >͞6>2_ ![ >͞6!" :_ = ![ >͞6!" *Y |9 ͮ! >͞6!" *W !C 0LOG <=0 OR A^X A<=<цxArRrX^R]" ! >6! >6: 2 : 2 2 ! >͞6ͮͱ̀! >6! >͞6! >͞6q'! >6: ! >͞6d ! >͞6! >͞6 ͤ(! >6! >͞6! >͞6l'! >͞6! >͞6: ! >͞6-" ! >͞6* ͤ(: ! >6! >͞6! >͞6** "! >6!""!"!>͞6! >͞6/ *#"! >͞6!>͞6*! >6 *|r ! >͞6!>͞6r *+"! >͞6!>͞6ͤ(! >67 ! >͞6!>͞6ҭ *#"! >͞6!>͞6ͤ(! >6r ! >͞6!>͞6q'!.>6!.>͞6!.>͞6! >6!5>6!5">2! >͞6!.>͞6!5>͞6ͤ(!.>6*">͞6!.>͞6ͤ(l':=2 ! >62:=2! >͞6!'>6!.>͞6!5>͞6ͤ(!.>6!.>͞6!>͞6*|+#&"*ͤ(! >͞6l'! >6! >͞6!'>͞6I! >͞6*|!>͞6ͤ(l'*|!>͞6ͤ(q'*I$I 88.؝I$I ]ݪr>2"! >͞6!>6!"!>6!>6!>6!>͞6!>6!~#%!>͞6*ͤ(!>6!>͞6!>͞6ͤ(!>6! >͞6!>͞6*!>͞6ͤ(!>͞6l'!>6!>͞6!>͞6!#±:=2*#" !>͞6*"w"n!p>6!y>͞6*w|g}o"wL!p>͞6ͤ(*w|j!p>͞6!p>͞6ͤ(!p>6)*n"!>6:W2z2!>͞6!"!>6:W:2!>͞6!""|2,&)}lg"*!%>6#=>/!%w}+:,:+2+!%>͞6!"k!t>6*u}lg:tM!jnbG|g}ox6:!>͞6!>͞6 !>6ý"!>6:2:!4#~w:!:G~w!$!>͞6!!>͞6*:3_!36>2222222222>022> 2!"""""*/"~€:/2!/g!ʙ~\C~9Cj*+"*#~!C$*|$†:†>2C*##"à**|*†:†>2C*##"$ >2KCà,>*|*|ʆ>2Kà-b*|S>2à:>2+*||>2>+2à:>2>+2^**|ʆ*#~^²Câ>2~- >2à.:/2à# :SKà*#"/!3""~ C-C>2~.< <E<<*w#"[C~.C~ aEaa*w#"cCAE>+2C~-~ ~+„2C#~+~•>0*+"2C~2:0o&! :0o&":-*&"*6*|/:/*| *** k*u/*&** k*&Ϳͯ** ҩ*"**3"~w~:ک w!3 œ**3+~#w+!3 y>123[!3"Y*+"~ 9*#"_** >$9:**+ ү>*9*#"Ô** :>$9:>*9:g:** > 9*#":g:g:/:>-9::9!3":ʚ**"*|X*~#"9*+">*|ʴ*!3 >,9*>~9#=u"*"*X*|ʴ+"*~#"9Ú:>.9*|*|*~#"9*+"*+"*|+">09:*|\>E9:>+9>-9*|3&"*! }09! *}09::>-9:9"**3 "*"*"**"*|#"*60#"é"**3 "*"**"**"*|*+~#w+"!3 >023*#"[#.,-$*^+:4O͙4*#"*#"*#"*#"*#">%9> 9*"*"|>ʊ>2>2222222}o|g}o|g"͆,&*"ͨ,&!||&xŷ&|/g}/o#>2"a232_2d!g>6:h:j2`2j!g>͞6>s2!u>͞6V ڍ!q>͞6l#!_4h>s2!y>͞6V Ҳ!q>͞6!"!_5Í:d/2d!}>͞6 h!g>6!_~/<^~w>2f{2e!k w#+~0:`> >-23:e4b:e=2_>2e>2f!k3:eL=2e~#:>.:fʉ=2f~#P!3k:e/<6.#60=o:eG:fG#w+~0ʉ.ʗ#6:_6E#+/<-p# ڹð:Ox0w#q#6!3~60#6>23#~x23::/:4O>!3/*a!g>͞6!q>͞6!"!g>62c!g~QQ=w!j~w+ ?:c2c,!g$:c07>24"2322!>6:":22!>͞6>s2!>͞6!>͞6*!4ù>s2!>͞6!>͞6ͤ(!5:/2!>͞6l'ù!>6!~./< 6^~w> 2{2! dw#H+~0S:> f>-23::=2>2> 2!3:ʝ=2~#Ë>.:=2~#á!3:/<6.#60=:G:G#w+~0.#6:"6E#+/<-p#  20Ox20w#q#6!3~960#6>23D#~9x23:4`:/`:4O>!3/*!>͞6!>͞6ͤ(!>62!~ʪ=w!~w+ ˜:2Å!}+:0Ѵ$5 `"S !3>6!3>6!3:3 ~R :33!3͹ , *S !33~w!33E R #G !" !3>6!3>6!3:3| ~õ :33!3͹ ʏ * !33~w!33Ҩ µ #ª !Ҿ  O y?z z> 7z {> >2%!""!!-!>6!(!>62,!21!2!!(!>͞6!ͻ!!(!!!-!!*&!|_!:&!Y!!,!"_!!1!"!1!,!+h!*&!}}!!!,!">2&!!+!7wҜ!+!:&!G!+!~w!(!$:)!2+!!+!~_w!0!~Ww:%!W"&!!(!-!NG!x!!!4#~w!~/w+"~w+~w """!">6!">6:"":""!"~_w!"~Ww"":"2#!" w#c"u"ʐ" ##n"!""w+ „"n":#G:"O2"x":""x"*"!#>[#!#>͞6*"'#*"!":"[#!">͞6!!#>͞6*"!"~w+ #!"~w# #!"7w8#+,#0!"~+~=w!"~w+J# :#2"zW~ww"^$!$>6!$>6:$m$:$a$!$~_w!$~Ww"$:$2$͑$#!$ͦ$ #!$ͦ$!$$+#?ڰ#!$$+#ð#:$o:$gG2$|"$x"$xa$*$!$>ͱ$!$>͞6*^$!$7wB$+'$!$͚$!$4#>w!$$*$!$:$ͱ$!$>͞6!!$>͞6*^$!s$0 DIVISION BY ZER!$͚$!$~w# $~w+¨$zW~ww~2%#~$+~=w~w~w+$ $6:%+~6# %>w+>%~+2<'#"='>+2?'~#% % %E„%~+ʧ%-ʧ%+>+2?'#~%{_~)'_#í%+6E:?'+{%/<2T'_&x//2@'!@'}+:<'+%:F'2F':T'1&!e'&/<2T'!W'"U'>͞6:T'=9&2T'*U'>͞6ͤ(&!^'>͞6!@'>͞6ͤ(*4>6*4;+*4~w2;'G!A'>6#=k&*='~E '#"='.Œ&>2;'r&!A'G'~#–&!F'F''!F'F''!F'L''!F'F'')'2L'!K'>6+=&!F'L'':;'& r&:;' '*='!T'E '. '4&:A'7'!F'F''ɯw+'01' >7ѯ7>s'>2'"'!'>6!'>62'2'ͳ'!'>͞6!<(!'w(!'w(*'|':''!'͆('!'͆(!''+'*'}} ( (!'͆(>2'!'7w(+(:'G!'~w!'}+:'2'!'~_w!'~Ww:'W"'!''NGk(xq(w(Y(~6!)>6:)d):)d)!)~_w!)~Ww"):)2)!p)w#(0()͡)Ͱ)(!|)) w+ )(:)G:)O2p)xH):p)H)xd)*)!)>)!)>͞6*a)Ϳ)*)!v):q))!p)>͞6!!)>͞6*a)!) ~w+ §)!)~w# ¶)!|) 7w)+)`!q)~+~=w!|) ~w+) )2p)zW~ww"*!t+>6!m+>6:u+ +:n+*!z+~_w!s+~Ww"{+:m+2f+5+0Y*!l+J+ ʄ*!s+J+!z+s++b*?H*!z+s++w*H*:t+o:f+gG2f+|*x*x**{+!4+>U+!.+>͞6**!l+7w*+¿*!g+>+!f+4#>w!f+}+!f+;+*{+!l+:g+U+!f+>͞6!!'+>͞6**!+0 DIVISION BY ZER!u+>+!n+~w# A+~w+L+zW~ww0~2+#~++~=w~w~w+›+ ƒ+6:++~6# µ+>w+>+~/* ,!(,G,ERROR IN INPUT, RE-ENTER PLEAS:4c2:4O2yc2!g,2:3b-??!p,G,NUMBER TO LARGE/SMALy!͙,x͙,Ҡ,) ›,",>2,7?{_zW!,5,yOxG#yO#xGҵ,*, DMõ,BK"@-:3O1-*3~ - #1-,~,K- K- K-E~&-+K--K- #X--~,9-# >0X-~,1-&-B-~,X-# "3y23O>55e.O23!3"3237- --- .$.-w2.:4ʼ-~͙4~#->236:4>ç-x-+~͙4-x-+>͙4> ͙4>͙4-->#͙4c2!3>/->#͙4c2:3b-!E.r1:4OC/:3b-TOO MANY CHARECTERS. MAX IS 2523!3"323^#V".>!.*.*3*3~ ʰ..#"3:323.!.0>!.*.*3*36!3"3#"3:323Ҿ.>23þ.-ASCII FIL~.#͙4.#~#yc2G22B/~2/2A/#~2/͙4!A/52//:B/G2yc2!I/2?2/"s/v/y32/!/2!/"/!/Ϳ0:4!*/o/~#.,-$*^+/&!\ª/#~:4O~͙4#y/N# 6~0#06#0^"#:00͘1:4c2**12o1~24#~24#:o1!p1F1:4O>[͙41>]͙4> ͙4:q1=2q1F1>2q1yc27a1:p1/2p17d1^"#͘1!12:4c2 WARNING ONL:4Oc22!12:4!121 ERRO IN LINE*4|0͙4|0͙4}0͙4}0͙4!4>w~2͙4!44#2͙4* s#r#" * +V+^" y24 7:4O!4 ~N2> ͙4<U2O> ͙4> ͙424"2Ͱ2:3!3͞6:3“2:3!:3!3͞6:3¬2:3!!"2232!2O  ~23!36!y323!322"`3z3OFx13y3#613#w1313 3#613O~73,3 #6#y6*`3"^33|K3}K3q3!3y236*^3b313F3O #6 wj3zʃ3 ʴ4 ʴ4!4 4 464!5 4 46y24>554724^#V!4!4>:4O:4S5!A A5l5#~#^#VN#!A _5l5~#l5"7^#=ʺ6V#=¦6*7*7^#V#N#F#N#F^#V#N#F#N#F#N#F#N"7__{7s+=7r+=7s+=7!K77i7> 27!D !870%BAD CHANNEL NUMBEÓ7K8K8777K8K8K8P8Ê798B8K8K8K8K8K8K8K8K8_#8|¬7*7:"8¾7ʳ72"8è7!77Ô7:"87#8|8*77>|82"872"87*78|! "78__7:8m8\!80>28:8Œ8\!80_<28!~ɀ&INPUT FILE REAP34 THEN PRINT "OUT OF RANGE OF MBASIC" 240 IF ABS(LOG(QUANT)/L)>34 THEN GOTO 600 250 IF A$ = "R" THEN GOTO 300 260 IF A$ = "D" THEN GOTO 370 270 IF A$ = "M" THEN GOTO 450 280 IF A$ = "MLOG" THEN GOTO 530 290 REM GIVEN RADIUS WE CALCULATE THE FOLLOWING: 300 DLOG = LOG(K)/L - 2*LOG(QUANT)/L 310 MLOG = .622089 + LOG(K)/L + LOG(QUANT)/L 320 SOLS = MLOG - 33.2989 330 PRINT "DENSITY =";10^(DLOG - INT(DLOG));"TEN";INT(DLOG);" GRAMS/CC" 340 PRINT "MASS =";10^(MLOG-INT(MLOG));"TEN";INT(MLOG);" GRAMS" 350 PRINT "SOLAR MASSES =";10^(SOLS - INT(SOLS));"TEN";INT(SOLS);"SOLS" 360 GOTO 600 370 REM GIVEN DENSITY WE CALCULATE THE FOLLOWING: 380 RLOG = .5*(LOG(K)/L-LOG(QUANT)/L) 390 MLOG = .622089 + .5*(3*LOG(K)/L-LOG(QUANT)/L) 400 SOLS = MLOG - 33.2989 410 PRINT "RADIUS = ";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);"CENTIMETERS" 420 PRINT "MASS = ";10^(MLOG - INT(MLOG));"TEN";INT(MLOG);"GRAMS" 430 PRINT "SOLAR MASSES =";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);"SOLS" 440 GOTO 600 450 REM GIVEN MASS IN GRAMS WE CALCULATE THE FOLLOWING: 460 SOLS = LOG(QUANT)/L - 33.2989 470 DLOG = 1.24418 + 3*LOG(K)/L - 2*LOG(QUANT)/L 480 RLOG = -.622089 + LOG(QUANT)/L - LOG(K)/L 490 PRINT "SOLAR MASSES = "10^(SOLS-INT(SOLS));"TEN";INT(SOLS);"SOLS" 500 PRINT "DENSITY = "; 10^(DLOG-INT(DLOG));"TEN";INT(DLOG);"GM/CC" 510 PRINT "RADUIS =";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);"CM" 520 GOTO 600 530 REM GIVEN COMMON LOG (BASE 10) OF MASS, WE CALCULATE: 540 SOLS = QUANT - 33.2989 550 DLOG = 1.24418 + 3*LOG(K)/L - 2*QUANT 560 RLOG = -.622089 + QUANT - LOG(K)/L 570 PRINT "SOLAR MASSES = ";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);"SOLS" 580 PRINT "DENSITY = ";10^(DLOG-INT(DLOG));"TEN";INT(DLOG);"GM/CC" 590 PRINT "RADIUS = ";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);"CM" 600 PRINT "--ooO0Ooo--" 610 PRINT "DO YOU WANT ANOTHER OBJECT? Y/N?" 620 INPUT ANS$ 630 IF ANS$ = "Y" OR ANS$="y" THEN GOTO 80 640 END ooO0Ooo--" 610 PRINT "a ();(Q)aaREM this is Program CRAMERS3.BAS, A program to calculate the REM solutions to 3 simultaneous linear equations in 3 unknowns REM using Cramer's Rule of substitution to form 3X3 Determinates REM REM THIS PROGRAM WAS WRITEN BY MICHAEL P. FINERTY 10/18/84 REM ************************************************************ 10 REM REM A(N)*X1 + B(N)*X2 + C(N)*X3 = D IS AN EQUATION IN 3 UNKNOWNS VAR DET, DET0, DET1, DET2, DET3 = REAL.DOUBLE VAR A$ = STRING VAR N = INTEGER REM DIM COM REAL.DOUBLE A(3) B(3) C(3) D(3) X(3) Y(3) Z(3) REM REM READ IN VALUES OF A,B,C&D FOR EACH OF THE EQUATIONS REM FOR N = 1 TO 3 PRINT "PLEASE INPUT A(";N;")" INPUT A(N) PRINT "PLEASE INPUT B(";N;")" INPUT B(N) PRINT "PLEASE INPUT C(";N;")" INPUT C(N) PRINT "PLEASE INPUT D(";N;")" INPUT D(N) NEXT N FOR N = 1 TO 3 X(N) = A(N) Y(N) = B(N) Z(N) = C(N) NEXT N REM GOSUB 100 REM DET0 = DET IF DET0 = 0 THEN PRINT "INCONSISTANT EQUATIONS, NO SOLUTION" IF DET0 = 0 THEN 200 FOR N = 1 TO 3 X(N) = D(N) Y(N) = B(N) Z(N) = C(N) NEXT N REM GOSUB 100 REM DET1 = DET PRINT "X1 = "; DET1/DET0 REM FOR N = 1 TO 3 X(N) = A(N) Y(N) = D(N) Z(N) = C(N) NEXT N REM GOSUB 100 REM DET2 = DET PRINT "X2 =";DET2/DET0 REM FOR N = 1 TO 3 X(N) = A(N) Y(N) = B(N) Z(N) = D(N) NEXT N REM GOSUB 100 REM DET3 = DET REM PRINT "X3 = ";DET3/DET0 REM 200 REM PRINT "DO YOU WISH TO SOLVE ANOTHER SET OF EQUATIONS? Y/N?" INPUT A$ IF A$ = "y" OR A$ = "Y" THEN 10 END 100 REM SUBROUTINE TO CALCULATE DETERMINATES FROM X(N),Y(N) AND REM Z(N) REM DET = X(1)*Y(2)*Z(3) + X(2)*Y(3)*Z(1) + X(3)*Y(1)*Z(2) DET = DET - X(3)*Y(2)*Z(1) - X(1)*Y(3)*Z(2) - X(2)*Y(1)*Z(3) RETURN  X(N) = A(N) Y(N) = %''* >͹>͹>͹>͹>͹>͹>͹>͹>͹>͹ >͹>͹>͹>͹!"!="6!`"Y!"|!"!"!">͹>͹>͹>͹ü*>!'͖%*!>Z%>͹PLEASE INPUT A(!*'3)! >͹*'!Wy;͎y >͹ yPLEASE INPUT B(!i*'3Ì)! >͹!*'!6Wy;͎y >͹"PLEASE INPUT C(!*'3)! >͹#*'!YWy;͎y >͹$aPLEASE INPUT D(!Q*'3t)!r >͹%*'!|Wy;͎y >͹&!͒ >͹'*>!'͖%*!>Z%>͹(*'!W*'!:>͖%>͹)*'!W*'!6:>͖%>͹0*'!W*'!Y:>͖%>͹1!͒ >͹2>͹3R >͹4>͹5{%X'>!_'͖%>͹6ó{%_'{% !>͹6#INCONSISTANT EQUATIONS, NO SOLUTION! >͹7{%_'{% !.É >͹8:*8>!'͖%R*P[!Y>Z%>͹9*'!W*'!|:>͖%>͹@*'!W*'!6:>͖%>͹A*'!W*'!Y:>͖%>͹B!c͒ >͹C>͹DR >͹E>͹F{%X'>!f'͖%>͹G$X1 = !{%f'{%_'U^  >͹H>͹IT*R>!'͖%l*ju!s>Z%>͹P*'!W*'!:>͖%>͹Q*'!W*'!|:>͖%>͹R*'!W*'!Y:>͖%>͹S!}͒ >͹T>͹UR >͹V>͹W{%X'>!m'͖%>͹X=X2 =!8{%m'{%_'U^  >͹Y>͹`m*k>!'͖%Å*Î!>Z%>͹a*'!W*'!:>͖%>͹b*'!W*'!6:>͖%>͹c*'!W*'!|:>͖%>͹d!͒ >͹e>͹fR >͹g>͹h{%X'>!t'͖%>͹i>͹p^ X3 = !X {%t'{%_'U^  >͹q>͹r>͹r>͹s 3DO YOU WISH TO SOLVE ANOTHER SET OF EQUATIONS? Y/N?!  >͹ty;!{'!y >͹u y Y!{'! : !{'! :  <A @>͹v>͹w>͹w>͹x>͹y>͹s x }  Ç Ì Ñ Ö Û *q !:*v !:*{ !:* !:* !:* !:ͽ* !:* !:* !:ͽ>!X'͖%>͹! & + 0 5 : ? D I {%X'* !:*$ !:*) !:*. !:*3 !:*8 !:*= !:*B !:*G !:>!X'͖%>͹>͹Copyright (C) 1979, By Topaz programming. All rights reserved. From here on protected by End User License.  " " " " " " " " * *"* : ͬ * * * !** "!ͬ zW{_}o|g"7 ->3 1 "7 ->3 >!"[ >W U "[ >W >!>2T#"2B!22!>͖%::22!>Z%>* !>Z%-ں !>Z%U!4Õ >* !>Z%- !>Z%!5ú : /2!>Z%ͽÕ !>͖%!~ /< ^~w> 2{2! @w#$+~0/:> B>-2B!:a:=2>2> 2!C!:y=2~#g>.:ʶ=2~#}!C!:/<6.#60=œ:G:G#w¬+~0ʶ.#6:6E#+/<-p#  20Ox20w#q#6!B!~60#6>2A! #~x2A!:T#<:p<:E"O>!A!*!>Z%!>Z%!>͖%2!~ʆ=w!~w+ t:2a!:0Ѵ$5 `"!I"6͝ !A!6͝ !J"B!~O#! ~Oz# "!B!>͖%!I!>͖%!O!:H!S~Ì:H!I!!B!͐f*!H!O!~w!C!J!Œ#!ҕOy?zz>7z{"!!!TrueFalse"!!>Z%!"E!!!>"9!B!͖%:C!>7/!|>"h{Um!A!6͝ *h:B!m}TʊtʊYʊyʊʊ>>"R#B!ͼͪз‘CÑ!A!#~+- ʭ ʭ+>+2#">+2~#  E~+-+>+2#~{_~z_#+6E:+{!/<2Ͱx//2!:+M:2:ʂ!b/<2!">Z%:=ʊ2*>Z%j!>Z%!>Z%*R#>͖%*R#*R#~w2G!>6#=¼*~EZ#".>2!~#!k!k!k!kz2!>6+= !k:8 :Z*!EZ.Z4J:!kɯw+o0ڂ >7ѯ7>>2"!>͖%!>͖%22!>Z%!͍!!*|1:+!1!!+:*}}ZZ!>2!7wn+b:G!~w!:2!~_w!~Ww:W"!NGxê~͖%!>͖%::!~_w!~Ww":2!w#70IdB! w+ XB:G:O2x:x*!>D!>Z%**!:D!>Z%!!>Z%*! ~w+ !~w# ! 7w!+`!~+~=w! ~w+3 #2zW~ww"M!>͖%!>͖%:\:P!~_w!~Ww":2͆0ê!͛ !͛!+³?ڙ!+Ù:o:gG2| x xP*!>ͦ!>Z%*M!7w++!͏!4#>w!!*!:ͦ!>Z%!!x>Z%*M!bÑ DIVISION BY ZER!͏!~w# ’~w+zW~ww0~2#~+~=w~w~w+ 6:+~6# >w+>~*1"͏0J@!B!6 :+Xw#dwXxn60#<62A!:pʇ!A!:E"O>*"!|>+2}/o|/g#>-2N#F |,úy/Ox/G y0w#õ*! ERROR IN INPUT, RE-ENTER PLEAS:N# :N#O͹y !@͹:>!;??!I NUMBER TO LARGE/SMALy!rxry) t">27?{_zW!5ʶyOxG#yO#xGҎ* DMÎBK":A!O *?!~  # ~,$ $ $E~+$-$ #1~,# >01~, ~,1# "?!y2A!O>#>O2>!!B!"?!2A!%ڜ ʜʲʥw :L#ʕ~U#~#X>2A!6:K#>ÀxX+~U#XxX+>U#> U#>U#X͜>#U# !A!>X>#U# :>!;!):N#O:>!;TOO MANY CHARECTERS. MAX IS 252>!!B!"?!2A!^#V">!f**?!*?!~ ʉʤ#"?!:A!2A!X!Ñ>!**?!*?!6!B!"?!#"?!:A!2A!җ>2A!×-ASCII FIL2~2#~U#!5:y !ù?2p"*-0!2s!s͝ !t"q!sv:E"!*q&~#.,-$*^+/&!\a#~:E"O~U##0N# 6~ʉ#6#É^"#:ʮO:N# **2&~2O##~2P##:&!':N#O>[U#̀>]U#> U#:(=2(>2(y %:'/2'%^"#O!B͹:N# WARNING ONL:N#O ͹!q͹:P#!w͹̀ ERRO IN LINE*O#|0U#|0U#}0U#}0U#!M#>w~U#!M#4#ùU#* s#r#" * +V+^" y2E" %:E"O!# ~ > U#< O> U#> U#2M#"d g :A!!B!Z%:?!J :A!!:A!!B!Z%:?!c :A!!!" 2?!ʉ ! O  ~2A!!B!͖%!0!2A!!A!͝ Å "!z OFx y» #6 #w  » #6 O~  #6#y͖%*!"!A!|!}!q !B!y2A!͖%*!! FA!O #6 w!!z:! p# p#!# 4 |#6|#!# 4 |#6y2#>#ʏ#%2#^#V!#!#>:#O:#$!A #($#~#^#VN#!A $($~#($"%^#=v%V#=b%*%*%^#V#N#F#N#F#N#F#N"%__{ұ%s+=ʽ%r+=ʽ%s+=°%!%%&> %!D !%Ñ%BAD CHANNEL NUMBE>&&&r&É&z&&&&&5&&&&&&&&&&&_&|W&*S&:&i&^&2&S&!&Ê&?&:&¥&&|¬&*&7>|ʿ&2&å&2&å&*&|! "&__7:F''\!G'ʑ>2F':E'7'\!G'‘_<2E'!~ɀ&INPUT FILE REAP 1E+10 THEN 60 40 LPRINT X;Y 50 NEXT X 60 PRINT "THAT'S ALL FOLKS" 36067977#)) 35 IREM REM THIS IS PROGRAM HOLECALC.BAS. IT CALCULATES THE PROPERTIES OF REM A NEWTONIAN BLACK HOLE (MASS DENSITY OR RADIUS) GIVEN ONE OF REM THOSE PROPERTIES.***THIS IS VERSION # 2*** REM IT CAN BE SHOWN THAT IF K = 3*C^2/(4*Pi*G) = 3.22 * TEN(27) GM/CC REM THAT R^2*D = K, WHERE C IS THE VELOCITY OF LIGHT, G IS REM NEWTON'S GRAVITATIONAL CONSTANT, PI = 3.1415926, R IS THE REM IS THE CRITICAL RADIUS AND D IS THE CRITICAL DENSITY AT THAT REM RADIUS. REM PREVIOUS ESTIMATES WERE BASED ON A MISTAKE BY THE REV MR REM MICHELL IN PROCEDINGS OF ROYAL ACADEMY (LONDON), WHO ASSUMED REM THAT IF THE ESCAPE VELOCITY WAS C, BODIES WOULD BE UNABLE TO REM LEAVE THE BLACK HOLE. IT IS PATENTLY OBVIOUS FROM CELESTIAL REM MECHANICS THAT SUBLUMINIAL VELOCITY OBJECTS WOULD BE ABLE TO REM ORBIT UNTIL THE ESCAPE VELOCITY REACHED 2^.5 * C, AT WHICH REM NOT EVEN LIGHT WOULD BE ABLE TO ORBIT. REM THIS PROGRAM WAS WRITTEN BY MIKE FINERTY, 11/25/84 IN S-BASIC REM 200 YEARS AFTER MR MICHELL'S MISTAKE. REVISED 4/23/85. REM ************************************************************* REM 10 VAR K,G,RLOG,DLOG,MLOG,QUANT,SOLS,L = REAL VAR ANS, RESPONSE = STRING:10 LET L = 2.302585 LET K = 3.22E+27 REM PRINT "PROGRAM RETURNS CRITICAL VALUE OF R,D&M IN CGS SYSTEM" PRINT "PLEASE SELECT INPUT" PRINT PRINT "R ....... RADIUS IN CM" PRINT PRINT "D ....... DENISTY IN GRAMS/CC" PRINT PRINT "M ....... MASS IN GRAMS" PRINT PRINT "MLOG .... LOGARITHM OF MASS IN GRAMS" PRINT REM INPUT "PLEASE INPUT LETTER OF CHOICE"; RESPONSE INPUT "PLEASE INPUT QUANTITY OF CHOICE"; QUANT IF ABS(LOG(QUANT)/L) > 34 THEN PRINT "OUT OF RANGE" IF ABS(LOG(QUANT)/L) > 34 THEN GOTO 20 PRINT RESPONSE;" = ";QUANT REM CASE RESPONSE OF "R": BEGIN DLOG = LOG(K)/L - (2*LOG(QUANT)/L)) MLOG = .6220886 + LOG(K)/L + LOG(QUANT)/L PRINT "DENSITY=";10^(DLOG-INT(DLOG));"TEN";INT(DLOG);" GMS/CC" PRINT "MASS = ";10^(MLOG-INT(MLOG));"TEN";INT(MLOG);" GMS" SOLS = MLOG - 33.29885 PRINT "SOLAR MASSES = ";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);" SOLS" END "D": BEGIN RLOG = 0.5*(LOG(K)/L - LOG(QUANT)/L) MLOG = .6220886 + 0.5*(3*LOG(K)/L-LOG(QUANT)/L) SOLS = MLOG - 33.29885 PRINT "RADIUS =";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);" CM" PRINT "MASS =";10^(MLOG-INT(MLOG));"TEN";INT(MLOG);" GMS" PRINT "SOLAR MASSES = ";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);" SOLS" END "M": BEGIN DLOG = 1.244177 + 3*LOG(K)/L -2*LOG(QUANT)/L RLOG = -.6220886 +LOG(QUANT)/L-LOG(K)/L SOLS = LOG(QUANT)/L - 33.29885 PRINT "DENSITY = ";10^(DLOG-INT(DLOG));"TEN";INT(DLOG);" GMS/CC" PRINT "RADUIS = ";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);" CM" PRINT "SOLAR MASSES = ";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);" SOLS" END "MLOG": BEGIN SOLS = QUANT - 33.2989 DLOG = 1.24418 + 3*LOG(K)/L - 2*QUANT RLOG = -.622089 + QUANT - LOG(K)/L PRINT "SOLAR MASSES =";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);" SOLS" PRINT "DENSITY =";10^(DLOG-INT(DLOG));"TEN";INT(DLOG);" GMS/CC" PRINT "RADIUS =";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);" CM" END END 20 PRINT "DO YOU WISH TO TRY ANOTHER VARIABLE OR VALUE? Y/N?" INPUT ANS IF ANS = "Y" OR ANS = "y" THEN GOTO 10 INT(RLOG);" CM" PRINT "MASS =";10^(MLOG-INT(MLOG));%00*>f'>f'>f'>f'>f'>f'>f'>f'>f' >f'>f'>f'>f'>f'>f'>f'>f'>f'>f'>f' >f'!>f'!>f'">f'#].>!/ .>f'$\xX.>!/ .>f'%>f'&~(>5PROGRAM RETURNS CRITICAL VALUE OF R,D&M IN CGS SYSTEM!ͪ"͍(ͮ(>f''~(oPLEASE SELECT INPUT![ͪ"͍(ͮ(>f'(~(͍(ͮ(>f')~(öR ....... RADIUS IN CM!ͪ"͍(ͮ(>f'0~(͍(ͮ(>f'1~(D ....... DENISTY IN GRAMS/CC!ͪ"͍(ͮ(>f'2~(͍(ͮ(>f'3~(LM ....... MASS IN GRAMS!4ͪ"͍(ͮ(>f'4~(͍(ͮ(>f'5~(á$MLOG .... LOGARITHM OF MASS IN GRAMS!|ͪ"͍(ͮ(>f'6~(͍(ͮ(>f'7>f'8~(͍(S%PLEASE INPUT LETTER OF CHOICE͍(ͧ%͍(y#! 0ͭ)͍(yͮ(>f'9~(͍(S%PLEASE INPUT QUANTITY OF CHOICE͍(ͧ%͍(y#!/1͍(yͮ(>f'@p./͋./͗.lͿʻ>f'@~(î OUT OF RANGE!ͪ"͍(ͮ(>f'A./͋./͗.Ϳ>f'A(>f'B~(! 0ͪ" = ! ͪ"./>͍(ͮ(>f'C>f'D! 0>;(@R!>͏Z>f'E>f'F_./͋./.[./͓͋./h>!/ .>f'GàA2../͋./c./͋./c>!/ .>f'H~(DENSITY=!ͪ".././hZ>TEN!ͪ"./>9 GMS/CC!1ͪ"͍(ͮ(>f'I~(^MASS = !Vͪ"l.h././hZ>ÎTEN!ͪ"./>è GMS!ͪ"͍(ͮ(>f'P2./.h>!/ .>f'Q~(SOLAR MASSES = !ͪ".././hZ>(TEN!$ͪ"./>C SOLS!=ͪ"͍(ͮ(>f'R>;(dD!b͏— >f'S>f'TÃ../͋././͋./h͓>!/ .>f'UA2..../͓͋././͋./h͓c>!/ .>f'V#2./.h>!/ .>f'W~(QRADIUS =!Hͪ"_.[././hZ>ÁTEN!}ͪ"./>Ú CM!ͪ"͍(ͮ(>f'X~(þMASS =!ͪ".././hZ>TEN!ͪ"./>  GMS! ͪ"͍(ͮ(>f'Y~(5 SOLAR MASSES = !% ͪ"C .? ././hZ>e TEN!a ͪ"./>À  SOLS!z ͪ"͍(ͮ(>f'`>;(á M! ͏ >f'a>f'b A0  . . ./͓͋./c. ./͓͋./h>!/ .>f'c A2. ./͋./c./͋./h>!/ .>f'dc 2./͋./._ h>!/ .>f'e~(Þ DENSITY = ! ͪ"ì . ././hZ> TEN! ͪ"./>  GMS/CC! ͪ"͍(ͮ(>f'f~( RADUIS = ! ͪ" . ././hZ>B TEN!> ͪ"./>[  CM!W ͪ"͍(ͮ(>f'g~(È SOLAR MASSES = !x ͪ"Ö . ././hZ>ø TEN! ͪ"./>  SOLS! ͪ"͍(ͮ(>f'h>;( MLOG! ͏>f'i>f'p 2./. h>!/ .>f'q9 AJ@ G .5 .< ./͓͋./c.C ./͓h>!/ .>f'rÍ A8. ./c./͋./h>!/ .>f's~( SOLAR MASSES =! ͪ" . ././hZ> TEN! ͪ"./>"  SOLS! ͪ"͍(ͮ(>f't~(I DENSITY =!? ͪ"W .S ././hZ>y TEN!u ͪ"./>Ö  GMS/CC! ͪ"͍(ͮ(>f'u~(ü RADIUS =! ͪ" . ././hZ> TEN! ͪ"./> CM!ͪ"͍(ͮ(>f'v>(>f'x>f'x~(k2DO YOU WISH TO TRY ANOTHER VARIABLE OR VALUE? Y/N?!8ͪ"͍(ͮ(>f'y~(͍(ͧ%͍(y#!0ͭ)͍(yͮ(>f'ëYðy!0!ͪ!0!ͪͻ>f'í>f'Copyright (C) 1979, By Topaz programming. All rights reserved. From here on protected by End User License.  "r!v> .!z> .:}2}:y22y!v>-r"t!v>-!v>-/h!z>-͓͋!~> .!~>-!> .!~>-!>-c!~>-!>-͟*t|L!>-*t|g}o"t+!z>-͓*t|I!z>-!z>-͓!z> .͓:n!v> .!>-!v>-*r"!> .!":: !>-!n>-*#"!>-!n>-!> .ë*|)!>-!j>-)*+"!>-!n>-͓!> .!>-r!y=?B>-!>-!>-/!j>-h!> .!">-!&>-!*>-!.>-!2>-!6>-!:>-!>>->2!!>-͓c:!=¸!>-͓c*|͠!f>-͓c*!>'LOG <=0 OR A^X A<=<цxArRrX^R]"!> .:W2z2!>-!"!> .:W:2!>-!"|2)}lg"!>6#=>/!w>": :2!>-!"]!f> .*g}lg:f?!\`TG|g}ox .!>-!> .!>-!>-cø>2"!> .!> .!> .!>-!> .!>-!> .!>-!> .!~#!>-!>-͓!> .!>-!>-͓!> .!>-!>-!>-!>-͓c!> .!>-!>-!š#…:=2!>-!> .!>-!>-c!> .!>-!"!> .:;!>-!+>-c!> .;"!> .:2:b!4#~wT:H!:G~w!B!>-!!>-*"!> .:2!>-!zW{_|/g}/o#">>">>͋!"!)> .:)2)!)>-!";͏>75";͏>7>l!>2"n2)2l2q!t> .:u:w2m2w!t>->;(!>-ښ!~>-!l4u>;(!>-ҿ!~>-͓!l5Ú:q/2q!>-cu!t> .!l~/<^~w>2s{2r!xw#+~0:m> ">-2):rAo:r=2l>2r>2s!x):rY=2r~#G>.:sʖ=2s~#]!)x:r/<6.#60=|:rG:sG#wŒ+~0ʖ.ʤ#6:l6E#+/<-p# ý:Ox0w#q#6!)~60#6>2)#~x2)::&:*O>!)u%*n!t>-!~>-͓!t> .2p!t~^^=w!w~w+ L:p2p9!tB:p07"!*61)!)61)!*)~O#«! ~Oz# "M!)> .!)> .!):)~L:))!)P&*M!))~w!))?L#A!UiOay?"|!z!!TrueFalse"!™!>-!"!º!!>>"!) .:)>/!|>" {!)61)* :)}T-t-Y-y-->>"Z!\ͯ:bW:_2_*Z\w#Q>j>2"!> .!> .22ͤ!>-!-!h!h*|:!u!u!+*}}!u>2!7w+:G!~w!B:2!~_w!~Ww:W"!NG\xbhJ4#~wl~/w+x~w+~w ‰"P!l> .!h> .:mS:iS!o~_w!k~Ww"p:h2r!_ w#{͊!ekw+ :rG:lO2_x7:_7xS*p!z>!w>-*P͙*p!b:`!_>-!!s>-*P!k~w+ !m~w# !e7wҪ+ž0!`~+~=w!e~w+¼ ¬2_zW~ww"!<> .!8> .:=:9!?~_w!;~Ww"@:8243!7 ^!;!?;+<?"!?;+Q":<o:4gG24|xx*@!>#!>-*!77wҴ+™!5 !44#>w!4B*@!7:5#!4>-!!>-*!>' DIVISION BY ZER!= !9~w# ~w+zW~ww~2#~o+~=w~w~w+` H6:+~6# z>w+>~+2 #" >+2 ~#4 4 4E~+-+>+2 #~4{_~͛ _#+6E: +{B/<2 x//2 ! >": +n: 2 : ʣ! /<2 ! " >-: =ʫ2 * >- Ë! >-! >- *+> .*+"*+~w2 G! >6#=* ~E{ #" .>2 !  ~# !  ͌ !  ͌ !  ͌ !  ͌ ͛ 2 ! >6+=A !  ͌ : Y  : { * ! E{ .{ 4k : !  ͌ ɯw+ 0ڣ >7ѯ7"!!!> .!!> .:!!:!!!!~_w!!~Ww"!:!2!!!w# !02!M!!!+!!!! w+ A!+!:!G:!O2!x!:!!x!*!!!>-"!!>-*!!*!!!:!-"!!>-!!!>-*!!! ~w+ !!!~w# !!! 7w "+!`!!~+~=w!! ~w+" "2!zW~ww0~2~"#~k"+~=w~w~w+\" D"6:~"+~6# v">w+>ˆ"~u%*"!"#ERROR IN INPUT, RE-ENTER PLEAS:+ͮ(:+Of(yͮ(!(#f(:)#??!1##NUMBER TO LARGE/SMAL"#:)Oʕ#*)~ g# #ʕ#Y#~,ʯ# ʯ# ʯ#E~ʊ#+ʯ#-ʯ# #ʼ#g#~,## >0ü#~,ʕ#Ê#ʦ#~,¼## ")y2)O>ͅ,$O2)!)")2)K.'$ '$P$=$n$ʈ$0$wʖ$:+ $~+~##>2)6:+> $x#+~+#x#+>+> +>+#'$>#+ͮ(!)>u%#>#+ͮ(:)#!$':+Oͧ%:)#TOO MANY CHARECTERS. MAX IS 252)!)")2)^#V"F%>!$*F%*)*)~ %/%#"):)2)$!H%>'>!"%*F%*)*)6!)")#"):)2)"%>2)"%-ASCII FIL~a%#+S%#~#y̮(͒(2%~ʖ%2%#~ʖ%+!%5ʖ%À%:%ʒ(yʮ(!%f(?2&"%%)2 &! &1)!!&"&! &#':*!*&%~#.,-$*^+/&!\&#~:*O~+#%N# 6~6'#,'6#6'^"#:c'['':+ͮ(**d'2'~2+#~2+#:'!'ʪ':+O>[+-(>]+> +:'=2'ª'>2'yͮ(K.':'/2'K.'^"#'!'f(:+ͮ( WARNING ONL:+Oͮ(f(!(f(:+!$(f(-( ERRO IN LINE*+|0+|0+}0+}0+!+>w~x(+!+4#f(+y2* Q.:*O!C, ~ҙ(> +< (O> +> +2+"((:)!)-:)(:)!:)!)-:)(:)!!")2))!,)O  ~2)!) .!)2)!)1))")ze)OFx|)yO)#6|)#w|)|) O)#6|)O~ڂ)w) #6#y .*)"))|–)}–)qg)!)y2) .*)ͭ)|)F)O #6 wõ)z) , ,!C, 4 ,6,!d, 4 ,6y2A,>ͅ,#,Q.2B,^#V!9,!B,>:A,O:B,ʣ,!A ‘,,#~#^#VN#!A ¯,,~#¼,"H.^#= .V#=-*H.*H.^#V#N#F#N#F"H.__{;.s+=G.r+=G.s+=:.!.T..> g.!D !m.>'%BAD CHANNEL NUMBE.À/À/.//À/À/À/Å/ÿ.n/w/À/À/À/À/À/À/À/À/_X/|.*.:W/..2W/.!//.:W///X/|6/*//7>|I/2W///2W///*l/|! "l/__7:/¢/\!/>'>2/://\!/>'_<2/!~ɀ&INPUT FILE REA 34 THEN PRINT "OUT OF RANGE" 0041:00 IF ABS(LOG(QUANT)/L) > 34 THEN GOTO 20 0042:00 PRINT RESPONSE;" = ";QUANT 0043:00 REM 0044:00 CASE RESPONSE OF 0045:00 "R": BEGIN 0046:01 DLOG = LOG(K)/L - (2*LOG(QUANT)/L)) 0047:01 MLOG = .6220886 + LOG(K)/L + LOG(QUANT)/L 0048:01 PRINT "DENSITY=";10^(DLOG-INT(DLOG));"TEN";INT(DLOG);" GMS/CC" 0049:01 PRINT "MASS = ";10^(MLOG-INT(MLOG));"TEN";INT(MLOG);" GMS" 0050:01 SOLS = MLOG - 33.29885 0051:01 PRINT "SOLAR MASSES = ";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);" SOLS" 0052:01 END 0053:00 "D": BEGIN 0054:01 RLOG = 0.5*(LOG(K)/L - LOG(QUANT)/L) 0055:01 MLOG = .6220886 + 0.5*(3*LOG(K)/L-LOG(QUANT)/L) 0056:01 SOLS = MLOG - 33.29885 0057:01 PRINT "RADIUS =";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);" CM" 0058:01 PRINT "MASS =";10^(MLOG-INT(MLOG));"TEN";INT(MLOG);" GMS" 0059:01 PRINT "SOLAR MASSES = ";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);" SOLS" 0060:01 END 0061:00 "M": BEGIN 0062:01 DLOG = 1.244177 + 3*LOG(K)/L -2*LOG(QUANT)/L 0063:01 RLOG = -.6220886 +LOG(QUANT)/L-LOG(K)/L 0064:01 SOLS = LOG(QUANT)/L - 33.29885 0065:01 PRINT "DENSITY = ";10^(DLOG-INT(DLOG));"TEN";INT(DLOG);" GMS/CC" 0066:01 PRINT "RADUIS = ";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);" CM" 0067:01 PRINT "SOLAR MASSES = ";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);" SOLS" 0068:01 END 0069:00 "MLOG": BEGIN 0070:01 SOLS = QUANT - 33.2989 0071:01 DLOG = 1.24418 + 3*LOG(K)/L - 2*QUANT 0072:01 RLOG = -.622089 + QUANT - LOG(K)/L 0073:01 PRINT "SOLAR MASSES =";10^(SOLS-INT(SOLS));"TEN";INT(SOLS);" SOLS" 0074:01 PRINT "DENSITY =";10^(DLOG-INT(DLOG));"TEN";INT(DLOG);" GMS/CC" 0075:01 PRINT "RADIUS =";10^(RLOG-INT(RLOG));"TEN";INT(RLOG);" CM" 0076:01 END 0077:00 END 0078:00 20 PRINT "DO YOU WISH TO TRY ANOTHER VARIABLE OR VALUE? Y/N?" 0079:00 INPUT ANS 0080:00 IF ANS = "Y" OR ANS = "y" THEN GOTO 10 0081:00 ****** End of program ****** 1 REM A IS SEMI-MAJ AXIS, B IS SEMI-MIN AXIS 2 REM FI IS ANGLE OF INCIDENCE IN DEGREEES 10 INPUT "A=";A 11 INPUT "B=";B 20 INPUT "FI:";FI 30 FI = FI*.0174532 40 REM FI IS NOW IN RADIANS 50 FOR Z = -10 TO 10 60 N = Z 70 GOSUB 260 80 MZ = MA 90 BZ = BA 100 FOR R = (Z+1) TO 10 110 N = R 120 GOSUB 260 130 MR = MA 140 BR = BA 150 AB = (BZ-BR)/(MR-MZ) 160 REM AB IS ABSISSA OF INTERSECTING RAYS 170 OD = MR*AB + BR 180 PRINT "Z:";Z, "R:";R 190 PRINT "MZ;"; MZ, "BZ:";BZ 200 PRINT "MR:";MR,"BR:";BR 210 PRINT "ABSISSA=";AB, "ORDINATE=";OD 220 PRINT 230 NEXT R 240 NEXT Z 250 STOP 260 REM THE FOLLOWING COMPUTES MA AND BA GIVEN 'N' 270 X = A*(((1+((N^2)/(B^2)))^.5)-1) 280 MO = -N*A/(B^2)/((1+((N^2)/(B^2)))^.5) 290 TH = ATN(MO) 300 IF N > 0 THEN 360 310 IF TH < = FI THEN 340 320 KA = TH + ABS(TH - FI) 330 GOTO 370 340 KA = TH - ABS(TH - FI) 350 GOTO 370 360 KA = 2*TH - FI 370 MA = TAN (KA) 380 BA = N - MA*X 390 RETURN  330 GOTO 370 340 KA = TH - ABS(TH - FI) 350 GOTO 370 360 K10 LPRINT 20 LPRINT "REM: THIS IS 'LSTBIN', SINGLE TERMS OF THE BINOMIAL DISTRIBUTION" 30 DEFDBL L 40 PRINT 50 LPRINT 60 INPUT; "N:"; N 70 PRINT 80 LPRINT "N=";N 90 INPUT; "R:";R 100 PRINT 110 LPRINT "R=";R 120 PRINT "RUNTIME =" .0908*R "SECONDS" 130 PRINT 140 INPUT; "THETA"; T 150 LPRINT "THETA="; T 160 PRINT 170 PRINT "CALCULATIONS IN PROGRESS" 180 FOR X = 1 TO R 190 Y = Y + LOG(X)/LOG(10) 200 NEXT 210 M = N - R + 1 220 FOR Z = M TO N 230 P = P + LOG(Z)/LOG(10) 240 NEXT Z 250 NCR = P - Y 260 S = 1 - T 270 Q = R*LOG(T)/LOG(10) 280 U = (N-R)*LOG(S)/LOG(10) 290 LOGPROB = NCR + Q + U 300 LPRINT 310 LPRINT 320 LPRINT "LOGPROB =" LOGPROB 330 LPRINT "PROBABILITY =" 10^(LOGPROB-INT(LOGPROB)), "TEN"INT(LOGPROB) 340 LPRINT 350 END  320 LPRINT "LOGPROB =" LOGPROB 330 LPRINT "PROBABILITY =" 10^(LOGPROB-INT(LOGPROB)), "TEN"INT(LOGPROB) 340 LPRINT 350 END a b "REM: THIS IS 'LSTBIN', SINGLE TERMS OF THE BINOMIAL DISTRIBUTION")b L,Y,P,Q,U/b(5b2Db<; "N:"; NJbFWbP "N=";NebZ; "R:";Rkbdxbn "R=";Rbx "RUNTIME =" Z9}R "SECONDS"bb; "THETA"; Tb "THETA="; Tbb "CALCULATIONS IN PROGRESS"b X  RcY Y (X)( )c.cM N R >c Z M NWcP P (Z)( )_c ZocNCR P Y}cS  TcQ R(T)( )cU (NR)(S)( )c"LOGPROB NCR Q Uc,c6c@ "LOGPROB =" LOGPROB0dJ "PROBABILITY ="  (LOGPROB(LOGPROB)), "TEN"(LOGPROB)6dTY$>Y$>Y$>Y$>Y$>Y$͊%͙%F"X͙%͚"͙%y͹ !,H͙%yͺ%>Y$>Y$>Y$>Y$͊%ÕX=!G*,͙̀%ͺ%>Y$>Y$>Y$>Y$͊%RUNTIME=!G**,͏ a ͏ SECONDS!G͙%ͺ%>Y$>Y$͊%͙%ͺ%>Y$ >Y$ ͊%͙%F"LAMBDA =͙%͚"͙%y͹ !,͙͛%yͺ%>Y$>Y$>Y$>Y$͊%×LAMBDA=!G'*,͙%ͺ%>Y$>Y$>Y$>Y$͊%CALCULATIONS IN PROGRESS!G͙%ͺ%>Y$>Y$ *>!,q%B*~%*,&!$>)>Y$>Y$C'*,*,͏ a L3 *?L3 b>!,B*>Y$>Y$!.ͮ>Y$>Y$Ú*,͏ '*,a L3 *L3 b>!,B*>Y$>Y$'*,o *L3 b>!,B*>Y$>Y$'*,'*,'*,>!$,B*>Y$ >Y$ >Y$!>Y$!͊%TLOGPROB=!KG'*$,͙%ͺ%>Y$">Y$">Y$#>Y$#͊%×LOGPROB=!G'*$,͙%ͺ%>Y$$>Y$$>Y$%>Y$%͊% PROBABILITY =!G*'*$,a '*$,a ͺ T͏ TEN!G'*$,a ͺ ͏ ͙%ͺ%>Y$&>Y$&>Y$'>Y$'͊%c PROBABILITY =!UGq*m'*$,a '*$,a ͺ T͏ ÙTEN!G'*$,a ͺ ͏ ͙%ͺ%>Y$(>Y$(͊% --ooOOOoo--!G͙%ͺ%>Y$)>Y$)>Y$0>Y$0͊% --ooOOOoo--! G͙%ͺ%>Y$1>Y$1>Y$2Copyright (C) 1979, By Topaz programming. All rights reserved. From here on protected by End User License.  """"""""**"*: 3***!**X "!3"3!7>B*!;>B*:>2>::2G2:!7>)3 "5!7>)!7>) T!;>)L!?>B*!?>)!C>B*!?>)!H>)O!?>)!C>)` *5| !H>)*5|g}o"5!;>)*5| !;>)!;>)!;>B*:G/!7>B*!H>)!7>)*3" ! >B*!" : :  ! >)!/ >)ʹڧ* #" ! >)!/ >)! >B*l* |! >)!+ >)ʹ* +" ! >)!/ >)! >B*ï! >)3 !y=  >)! >)! >) !+ >)T! >B*! >)! >)! >)! >)! >)! >)! >)! >)>2 ! >)O: =y ! >)O* |ʼ ͏ a !' >)O* ! 1$LOG <=0 OR A^X A<=<цxArRrX^R]"W !Z >B*:] W2] z2` !Z >)!" ! >B*: W: 2 ! >)!" |2 d )}lg" ! >6#=­ >/! w: : 2 ! >)!" !' >B**( }lg:' ! !  G|g}ox< :- d !! " ! >B*! >)! >B*! >)! >)Oy >2 " ! >B*! >B*! >B*! >)! >B*! >)! >B*! >)! >B*!  ~#¹ ! >)! >)! >B*! >)! >)! >B*! >)! >)! >)! >)O! >B*! >)! >)ʹʉ !  [ #F : =ʉ 2 ! >)! >B*! >)! >)O! >B*ñ ! >)!"@ !O >B*:R  !O >)! >)O!O >B* "@ !O >B*:R 2W :O C # !O 4#~w :O !R :W G~w!O .!O >)!!S >)*@ }o|g|/g}/o#" !&>B*:&2&!&>)!>2"2&22!>B*:':22!>)>%!>)ʹ !>)!4 >%!>)ʹ!>)!5 :)/2!>)O !>B*!~;/<C^~w>2{2!iw#U+~0`:> s>-2&::=2>2>2!&:ʪ=2~#Ø>.:=2~#î!&:/<6.#60=:G:G#w+~0.#6:'6E#+ /<-p# :Ox#0w#q#6!&~>60#6>2&I#~>x2&:e:#e:'O>!&h"*!>)!>)!>B*2!~ʯ=w!~w+ :2Ê!.:07>2'"2&22!>B*: ʀ:%22%!>)>%!:>)Q<!3>)b!4>%!A>)Qa!3>)!5<:z/2!H>)!>B*!~/< Ҕ^~w> 2{2!& w#¦+~0ʱ:> >-2&::=2>2> 2!&&:=2~#>.:8=2~#!&&:/<6.#60=:G:G#w.+~08.F#6:ʀ6E#+[/<-p# h_ 2P0Ox2O|0w#q#6!&~—60#6>2&â#~—x2&:'ʾ:#ʾ:'O>!&h"*!>)!3>)!>B*2!~=w!%~w+ :2!:0Ѵ$5 `"!&>B*!&>B*!&:&w~ð:&&!&ʊ*!&&~w!&&ң°#¥!"!&>B*!&>B*!&:&~:&&!&*!&&~w!&&#!0O(y?zGz>D7zN{>V>2"!>B*!>B*22͐!>)!!T!T*|:!aý!a!+*}}!a>2!7w+:G!~w!.:2!~_w!~Ww:W"!NGHxNT64#~wX~/w+d~w+~w u"<!X>B*!T>B*:Y?:U?![~_w!W~Ww"\:T2^!K w#gv!QWw+ :^G:XO2Kx#:K#x?*\!f>͹!c>)*<ͅ*\!N:L͹!K>)!!_>)*<!W~w+ m!Y~w# |!Q7wҖ+Š0!L~+~=w!Q~w+¨ ˜2KzW~ww"!(>B*!$>B*:):%!+~_w!'~Ww",:$2 !# J!'!+'+(?!+'+=:(o: gG2 |xx*,!>!>)*!#7wҠ+…!!! 4#>w! .*,!#:!! >)!!>)*!1$ DIVISION BY ZER!)!%~w# ~w+zW~ww~2n#~[+~=w~w~w+L 46:n+~6# f>w+>y~+2#">+2~#   E~+-+>+2#~ {_~͇_# +6E:+{./<2ͽx//2!:+Z:2:ʏ!o/<2!">):=ʗ2*>)w!>)!>)*'>B**'*'~w2G!>6#=*~Eg#".>2!~#!x!x!x!x͇2!>6+=-!x:E :g*!Eg.g4W:!xɯw+|0ڏ >7ѯ7>>2"! >B*!>B*22!>)!͚!! *|>:8!>!!+G*}}gg!>2!7w{+o:G!~w!:2!~_w!~Ww:W"! NGx÷~B*!>B*::!~_w!~Ww":2!w#D0VqO! w+ eO:G:O2x:x*!>Q!>)**!:Q!>)!!>)*! ~w+ !~w# ! 7w.+"`!~+~=w! ~w+@ 02zW~ww"Z!>B*!>B*:i:]!~_w!~Ww":2͓0÷!ͨ !ͨ!+?ڦ!+æ:o:gG2|xx]*!>ͳ!>)*Z!7w8+!͜!4#>w!!*!:ͳ!>)!!>)*Z!o1$ DIVISION BY ZER!͜!~w# Ÿ~w+ªzW~ww0~2#~+~=w~w~w+ 6:+~6# >w+>%~h"*~"B0—Í!&6 :A+ʥw#ʱwåx»60#<62&:#!&:'O>h"*"5!B|>+2A}/o|/g#>-2A7N#F |,y/Ox/G y0w#.*5&: &^s#rdI!jÉERROR IN INPUT, RE-ENTER PLEAS:'ͺ%:'OY%yͺ%!Y%:&͹ ??!ÉNUMBER TO LARGE/SMAL̯2' +->2'`i"8 ! T])))0 ? _:'|/g}/o#*8 DM! Hȷ707 * ?_)))) " :&Oʈ *&~ Z #ʈ L ~,ʢ ʢ ʢ E~} +ʢ -ʢ  #ʯ Z ~, # >0ï ~,ʈ } ʙ ~,¯ # "&y2&O>͌(ʼ!O2&!&"&2&m*! !C!0!a!{!#!wʉ!:'!~'~# >2&6:'> x +~' x +>'> '>' !>#'ͺ%!&>h" >#'ͺ%:&ù !!$:'O͚":&ù TOO MANY CHARECTERS. MAX IS 252&!&"&2&^#V"9">!!*9"*&*&~ """#"&:&2&!!;"1$>!"*9"*&*&6!&"&#"&:&2&">2&"-ASCII FIL~T"#'F"#~#y̺%͞%2"~ʉ"2"#~ʉ"'!"5ʉ"s":"ʞ%yʺ%!"Y%?2#"""&2#!#=&!#"#!#$:'!*#"~#.,-$*^+/&!\##~:'O~'#"N# 6~)$#$6#)$^"#:V$N$$:'ͺ%**W$2$~2'#~2'#:$!$ʝ$:'O>[' %>]'> ':$=2$$>2$yͺ%m*¸$:$/2$m*»$^"#$!$Y%:'ͺ% WARNING ONL:'Oͺ%Y%!%Y%:'!%Y% % ERRO IN LINE*'|0'|0'}0'}0'!'>w~k%'!'4#Y%'* s#r#" * +V+^" y2' s*:'O!J( ~ҥ%> '<¬%O> '> '2'"&&:&!&):&%:&!:&!&):&&:&!!"&&2&)&!8&O  ~2&!&B*!&2&!&=&%&"&zq&OFxʈ&y[È&#wʈ&ʈ& [È&O~ڎ&ʃ& #6#yB**&"&&|¢&}¢&qs&!&y2&B**&͹&È&F&O #6 w&z& ( (!J( 4 (6(!k( 4 (6y2H(>͌(*(s*2I(^#V!@(!I(>:H(O:I(ʪ(!A ˜((#~#^#VN#!A ¶((~#("j*^#=*V#=)*j**j*^#V#N#F#N#F^#V#N#F#N#F#N#F#N"j*__{]*s+=i*r+=i*s+=\*!*v**> ډ*!D !*1$%BAD CHANNEL NUMBE*â+â++5+&+â+â+â+ç+*Ð+Ù+â+â+â+â+â+â+â+â+_z+|+**:y++ +2y+*!0+6+*:y+Q+z+|X+*Q+7>|k+2y+Q+2y+Q+*+|! "+__7:++\!+1$>2+:++\!+1$_<2+!~ɀ&INPUT FILE REA=0 THEN PRINT " N" 210 TSIN = SIN(AZ)*COS(ALT)/COS(DECLINAT) 220 TCOS = (SIN(ALT) - SIN(LAT)*SIN(DECLINAT))/(COS(LAT)*COS(DECLINAT)) 230 HA = ATN(TSIN /((1-TSIN^2)^.5)) 240 HA = HA*C1 260 HA = ABS(HA) 270 IF TSIN < 0 AND TCOS >=0 THEN PRINT "HOUR ANGLE ="; HA;" DEGREES" 280 IF TSIN < 0 AND TCOS >= 0 THEN TIMEANG = HA 290 IF TSIN < 0 AND TCOS < 0 THEN PRINT "HOUR ANGLE ="; 180 - HA;" DEGREES" 300 IF TSIN < 0 AND TCOS < 0 THEN TIMEANG = 180 - HA 310 IF TSIN >= 0 AND TCOS < 0 THEN PRINT "HOUR ANGLE ="; 180 + HA;" DEGREES" 320 IF TSIN >= 0 AND TCOS >=0 THEN PRINT "HOUR ANGLE ="; 360 - HA;" DEGREES" 330 IF TSIN >= 0 AND TCOS < 0 THEN TIMEANG = 180 + HA 340 IF TSIN >= 0 AND TCOS >= 0 THEN TIMEANG = 360 - HA 350 INPUT "LOCAL SIDERIAL TIME HRS,MINS = "; HRS,MINS 360 SIDTIME = 15*HRS + MINS/4 370 RA = SIDTIME + 360 - TIMEANG 380 IF RA > 360 THEN RA = RA -360 390 PRINT "RIGHT ASCENTION ="; RA;"DEGREES" 400 RTASC = INT(RA/15) 410 PLUSMINS = 60*(RA/15 - RTASC) 420 PRINT "RIGHT ASCENTION = ";RTASC;"HRS "; PLUSMINS;"MINS" 430 PRINT "DO YOU WANT ANOTHER OBJECT Y/N?" 440 INPUT ANS$ 450 IF ANS$ = "Y" THEN 110 460 END SC;"HRS "; PLUSMINS;"MINS" 430 PRINT "DO YOU WANT ANOTHER OBJECT Y/N?" 440 INPUT ANS$ 450 IF ANS$ = "Y" THEN 110 460 EN POSITION.BAS is an MBASIC program used to identify objects seen in a dobsonian alt-azmuth telescope using setting circles and a clock. Siderial time may be computed if the longitude of the observer is known using program TIME.BAS. If siderial time is known for the begining of an observing session, in 6 hours siderial time will be out of synchronization by 1 minute of time or a quarter of degree of arc (approximately). This amount is insignificant when one considers the accuracy of dobsonian seeting circles +/- 0.5 degrees. Longitude may be determined by looking on a map for the nearest degree of longitude (horizontal measure). Locations of famous observatories are found in the Astronomical Almanac. Program TIME.BAS will calculate local siderial time given the date (Year, eg 1984; Month, eg 7 (July), day eg 14) the hour, minute and second of Universal Time (A derivitive of Greenwich Mean Time). UT is broadcast by WWV, Colorado in the shortwave band. Using POSITION: enter the latitude of the observer, the altitude and azmuth (to the nearest 1/2 degree or so, if possible) of the observed body. The program will immediately comput the declination and after a slight pause the local hour angle of the body. The program will then ask the siderial time, which you will enter to the nearest minute or two from the clock that you wisely have set to Siderial time, using program TIME at the beginning of your observing session. Add 1/2 minute for each 3 hours of time elapsed since you set the clock (easily done using a digital watch in stopwatch mode, set going at the same time the clock was set to siderial time initially.) Having entered siderial time, the computer will spit out the Right Ascention of the body in question. This may be compared with any good chart of the sky to pinpoint the probable identity of the object. If no object is marked in the circle surrounding the object with a diameter of 1 degree (four minutes of the hour circle at the equator), consider the posibility that you have made a mistake; at the same time consider the possibility that you have just discovered an Comet. Fame and Fortune? It is always a possibility! CONVENTIONS: West and North are positive East and South are negative Universal time for TIME.BAS All computations are in decimal degreesiderial time, u10 REM THIS IS PROGRAM "QUADROOT" 20 REM THIS PROGRAM CALCULATES THE ROOTS OF A QUADRATIC EQUATION 30 REM Y = A*X^2 + B*X + C HAS TWO ROOTS AT Y = O 40 LPRINT "PROGRAM QUADROOT" 50 PRINT "PROGRAM QUADROOT" 60 INPUT "A=";A 70 LPRINT "A=";A 80 INPUT "B=";B 90 LPRINT "B=";B 100 INPUT "C=";C 110 LPRINT "C=";C 120 DIS = B^2 - 4*A*C 130 IF DIS > 0 THEN 170 140 IF DIS < 0 THEN 190 150 LPRINT "EQUAL ROOTS ="; -B/(2*A); ","; -B/(2*A) 160 GOTO 210 170 LPRINT "REAL ROOTS=" (-B+(DIS)^.5)/(2*A) "&" (-B-(DIS)^.5)/(2*A) 180 GOTO 210 190 IMAG = ABS(DIS) 200 LPRINT "COMPLEX ROOTS="; -B/(2*A);"+i*";((IMAG)^.5)/(2*A); "&"; -B/(2*A);"-i*";((IMAG)^.5)/(2*A) 210 PRINT "ROOTS ARE ON PRINTOUT" 220 PRINT "--ooOOOoo--" 230 LPRINT "--ooOOOoo--" 240 LPRINT 250 PRINT 260 PRINT "DO YOU WANT ANOTHER QUADRATIC? Y/N?" 270 INPUT ANS$ 280 IF ANS$ = "Y" THEN 10 290 PRINT "RETURN TO MBASIC COMMAND LEVEL" 300 END WANT ANOTHER QUADRATIC? Y/N?" 270 INPUT ANS$ 280 IF ANS$ = "Y" THEN 10 290 PRINT "RETURN TO MBASIREM PROGRAM QUADROOT;PROGRAMMER MICHAEL P FINERTY, 9/5/84 REM THIS IS THE LISTING FOR PROGRAM QUADROOT.COM, AN S-BAISC PROGRAM REM THAT EVALUATES THE ROOTS OF QUADRATIC EQUATIONS USING THE REM COEFFICIENTS OF THE INDIVIDUAL TERMS: A,B,&C OF THE EQUATION: REM A*X^2 + B*X + C = 0 TO FIND THE POINTS OF INTERSECTION (TWO) REM OF THE CURVE WITH THE LINE Y = 0. THE ROOTS MAY BE EITHER REAL REM OR COMPLEX AND EITHER EQUAL OR UNEQUAL. IN THIS IMPLEMENTATION REM "A" CANNOT BE EQUAL TO ZERO. REM REM *** DECLARATION OF VARIABLES *** REM 10 VAR AXIS, A, B, C, DIF, DISCRIM = REAL VAR ANS = STRING REM REM *** INPUT OF VARAIABLES AND MESSAGES *** REM CONSOLE PRINT "PLEASE INPUT THE COEFFICIENTS OF YOUR QUADRATIC" INPUT "A = ";A IF A = 0 THEN PRINT "YOUR EQUATION IS NOT QUADRATIC" IF A = 0 THEN 10 LPRINTER PRINT "A = ";A CONSOLE REM INPUT "B = ";B LPRINTER PRINT "B = ";B CONSOLE REM INPUT "C = ";C LPRINTER PRINT "C = ";C CONSOLE REM REM *** AXIS IS AXIS OF SYMMETRY OF PARABOLA *** REM AXIS = -B/(2*A) REM REM *** ROOTS ARE AT DISTANCE DIF FROM AXIS *** REM IF B*B = 4*A*C THEN DIF = 0 IF B*B = 4*A*C THEN 20 REM DIF = ((ABS(B*B - 4*A*C))^0.5)/(2*A) REM REM *** ROOTS ARE REAL OR COMPLEX DEPENDING ON SIGN OF DISCRIM *** REM *** THEY ARE EQUAL IF DISCRIM IS ZERO *** REM 20 DISCRIM = B*B - 4*A*C REM REM REM ***************************************************************** REM REM LOGICAL PORTION OF PROGRAM : SGN(A) = 1 IF A GREATER THAN ZERO REM = 0 IF A EQUALS ZERO REM =-1 IF A LESS THAN ZERO REM CASE SGN(DISCRIM) OF -1: BEGIN PRINT "ROOTS ARE: "; AXIS;" +i*";DIF PRINT "AND: "; AXIS;" -i*";DIF PRINT "--ooO0Ooo--" LPRINTER PRINT "ROOTS ARE: "; AXIS;" +i*";DIF PRINT "AND: "; AXIS;" -i*";DIF PRINT "--ooO0Ooo--" CONSOLE END 0: BEGIN PRINT "ROOTS ARE: ";AXIS PRINT "AND: "; AXIS PRINT "--ooO0Ooo--" LPRINTER PRINT "ROOTS ARE: ";AXIS PRINT "AND: "; AXIS PRINT "--ooO0Ooo--" CONSOLE END 1: BEGIN PRINT "ROOTS ARE: "; AXIS + DIF PRINT "AND: "; AXIS - DIF PRINT "--ooO0Ooo--" LPRINTER PRINT "ROOTS ARE: "; AXIS + DIF PRINT "AND: "; AXIS - DIF PRINT "--ooO0Ooo--" CONSOLE END END PRINT LPRINTER PRINT CONSOLE REM REM *** CONDITIONAL LOOP FOR MORE QUADRATICS *** REM PRINT " DO YOU WANT TO USE ANOTHER QUADRATIC? Y/N?" INPUT ANS IF ANS = "Y" THEN 10 ELSE END  =-1 IF A LESS THAN ZERO REM CASE SGN(DISCRIM) OF -1: BEGIN PRINT "ROOTS ARE: "; AXIS;%",",* >=#>=#>=#>=#>=#>=#>=#>=#>=# >=#>=#>=#>=#>=#>=#>=#>=#>=#>=#U$/PLEASE INPUT THE COEFFICIENTS OF YOUR QUADRATIC!́d$ͅ$>=#U$d$*!A = d$~!d$y͝!+d$yͅ$>=# &)+)"͟u>=# U$hYOUR EQUATION IS NOT QUADRATIC!Íd$ͅ$>=#!Ã)+)͟ʙn>=#">=##U$õA = !́)+3d$ͅ$>=#$>=#%>=#&U$d$*!B = d$~!d$y͝!+d$yͅ$>=#'>=#(U$'B = !"́)+3d$ͅ$>=#)>=#0>=#1U$d$*!C = d$~!d$y͝!+d$yͅ$>=#2>=#3U$ÙC = !́)+3d$ͅ$>=#4>=#5>=#6>=#7>=#8)+))+j͵>!+)>=#9>=#@>=#A>=#B)+)+j))+j)+j͟a>=#BT)P>!+)>=#Co)+)+j)k)+j)+j͟ʝ+>=#D>=#Eòù)+)+j))+j)+j?͜)R ))+j͵>!+)>=#F>=#G>=#H>=#I>=#P>=#P9)+)+j)5)+j)+j?>!+)>=#Q>=#R>=#S>=#T>=#U>=#V>=#W>=#X>=#Y)+Y>͕$ù)L>=#`>=#aU$ ROOTS ARE: !́)+3 +i*!́)+3d$ͅ$>=#bU$,AND: !&́)+3C -i*!>́)+3d$ͅ$>=#cU$t --ooO0Ooo--!h́d$ͅ$>=#d>=#eU$ä ROOTS ARE: !́)+3û +i*!́)+3d$ͅ$>=#fU$AND: !́)+3 -i*!́)+3d$ͅ$>=#gU$. --ooO0Ooo--!"́d$ͅ$>=#h>=#i >͕$X)TŒ>=#p>=#qU$Æ ROOTS ARE: !ź)+3d$ͅ$>=#rU$ñAND: !́)+3d$ͅ$>=#sU$ --ooO0Ooo--!́d$ͅ$>=#t>=#uU$ ROOTS ARE: !́)+3d$ͅ$>=#vU$=AND: !7́)+3d$ͅ$>=#wU$n --ooO0Ooo--!b́d$ͅ$>=#x>=#y >͕$Ø) >=#>=#U$ ROOTS ARE: !́)+)+:3d$ͅ$>=#U$AND: !́)+)+?3d$ͅ$>=#U$2 --ooO0Ooo--!& ́d$ͅ$>=#>=#U$b ROOTS ARE: !V ́)+)+:3d$ͅ$>=#U$Õ AND: ! ́)+)+?3d$ͅ$>=#U$ --ooO0Ooo--! ́d$ͅ$>=#>=# >$>=#U$d$ͅ$>=#>=#U$d$ͅ$>=#>=#>=#>=#>=#U$v + DO YOU WANT TO USE ANOTHER QUADRATIC? Y/N?!J ́d$ͅ$>=#U$d$~!d$y͝!+̈́%d$yͅ$>=#ö Y!+! Ϳ n >=#>=#Copyright (C) 1979, By Topaz programming. All rights reserved. From here on protected by End User License.  "j !n >)!r >):u 2u :q 2~ 2q !n >)j"l !n >)!n >)?!r >)̓ j!v >)!v >)!z >)!v >)! >):!v >)!z >)͗*l |D ! >)*l |g}o"l # !r >)j*l |A !r >)!r >)j!r >) j:~ f !n >)! >)!n >)͵*j "!>)!": : !>)!f>) *#"!>)!f>)͵!>)ã *|! !>)!b>)! *+"!>)!f>)j!>) !>)j!y=7 :>)!>)!>)͵!b>)?!>)!>)!>)!">)!&>)!*>)!.>)!2>)!6>)>2!>)j::=° !>)j:*| ͘!^>)j:*! #LOG <=0 OR A^X A<=<цxArRrX^R]"!>):W2z2!>)!"!>):W:2!>)!" |2)}lg"!>6#=>/!w::2!>)!"U!^>)*_}lg:^7!TXLG|g}ox<<:d!!L"!>)!>)!>)!>)!>):ð>2"!>)!>)!>)!>)!>)!>)!>)!>)!>)!~#!>)!>)j!>)!>)!>)j!>)!>)!>)!>)!>)͵j:!>)!>)!>)!’#}:=2!>)!>)!>)!>):!>)!>)!"A!P>):S2X:PD$!P4#~w:P !S:XG~w!P!P>)!!T>)*A"!>)::w>!>2!>)*!>)*"!>):2!>)!|/g}/o#">">>̀!" !%>):%2%!%>)!"0̈́>,*"0̈́>,>a!>2"c2%2a2f!i>):j:l2b2l!i>)>͕$!w>)ڏ!s>)͵!a4j>͕$!{>)Ҵ!s>)j!a5Ï:f/2f!>):j!i>)!a~/<^~w>2h{2g!m w#+~0:b> >-2%:g6d:g=2a>2g>2h!m%:gN=2g~#<>.:hʋ=2h~#R!%m:g/<6.#60=q:gG:hG#w+~0ʋ.ʙ#6:a6E#+/<-p# ڻò:Ox0w#q#6!%~60#6>2%#~x2%: :! :&O>!%L!*c!i>)!s>)j!i>)2e!i~SS=w!l~w+ A:e2e.!i:e07"!&6%!%6%!&%~Oʺ¶# ! ~ʵOz¶#¼õ ʵ¶õ"B!%>)!%>)!%:%~A:%%!%E*B!%%~w!%%4A#6!J^OVy?"q!uo!z!TrueFalse"!Ž!>)!>æ>"!%):%>/!"{!%6%*:%}TtYy>>"1!3͆:9W:626*13w#(>A>2n"k!v>)!q>)2u2z{!q>)!!q?!v?*o|:o!uLè!zL!zu+±*o}}!uL>2o!t7w+:oG!t~w!q:r2t!t~_w!y~Ww:nW"o!qvNG3x9?!4#~wC~/w+O~w+~w `"'!C>)!?>):D*:@*!F~_w!B~Ww"G:?2I!6 w#¬þRaҷ!<Bw+ ÷:IG:CO26x:6x**G!Q>ͤ!N>)*'p*G!9:7ͤ!6>)!!J>)*'!B~w+ X!D~w# g!<7wҁ+u0!7~+~=w!<~w+“ ƒ26zW~ww"!>)!>)::!~_w!~Ww":2  ! 5!!+?!+(:o: gG2 |kxkx*!>!>)*!7wҋ+p! ! 4#>w! *!: ! >)!!>)*!# DIVISION BY ZER!!~w# ~w+zW~ww~2Y#~F+~=w~w~w+7 6:Y+~6# Q>w+>d~+2#">+2~#   E~+-+>+2#~ {_~r_#+6E:+{/<2ͨx//2!:+E:2:z!Z/<2!">):=ʂ2*>)͵b!>)!>)͵*'>)*'V*'~w2G!>6#=´*~ER#".>2û!~#!c!c!c!cr2!>6+=!c:0 »:R*!ER.R4B:!cɯw+g0z >7ѯ7"r!>)!>):u:u!~_w!~Ww":2!w#0 $Ͳ! w+ :G:O2xY:Yxu*!>!>)*r*!:!>)!!>)*r! ~w+ ¸!~w# ! 7w+`!~+~=w! ~w+ 2zW~ww0~2U#~B+~=w~w~w+3 6:U+~6# M>w+>_~L!*!ERROR IN INPUT, RE-ENTER PLEAS:'ͅ$:'O=$yͅ$!=$:%͝??!NUMBER TO LARGE/SMAL"{:%Ol*%~ > #l0~,ʆ ʆ ʆE~a+ʆ-ʆ #ʓ>~,t# >0Ó~,la}~,“# "%y2%O>\(ʠ O2%!%"%2%"* '  E _  wm :'~'~#º>2%6:'>xʺ+~'úxʺ+>'> '>'ú>#'ͅ$!%>L!ú>#'ͅ$:%Ý! ͭ#:'O~!:%ÝTOO MANY CHARECTERS. MAX IS 252%!%"%2%^#V"!>! *!*%*%~ !#"%:%2%Һ !!#>! *!*%*%6!%"%#"%:%2% >2% -ASCII FIL~8!#'*!#~#y̅$i$2}!~m!2|!#~m!'!|!5m!W!:}!i$yʅ$!!=$?2!"!ʱ!͛%2!!!%!!"!!!":&!*!!~#.,-$*^+/&!\!#~:&O~'#ô!N# 6~ ###6# #^"#::#2##:'ͅ$**;#2#~2'#~2'#:#!#ʁ#:'O>['$>]'> ':#=2##>2#yͅ$"*œ#:#/2#"*Ÿ#^"##!#=$:'ͅ$ WARNING ONL:'Oͅ$=$!#=$:'!#=$$ ERRO IN LINE*'|0'|0'}0'}0'!'>w~O$'!'4#=$'y2& (*:&O!( ~p$> '<w$O> '> '2'"$$:%!%):%µ$:%!:%!%):%$:%!!"$2%$!%O  ~2%!%)!͛%2%!%%$"%z<%OFxS%y&%#6S%#wS%S% &%#6S%O~Y%N% #6#y)*%"%%|m%}m%q>%!%y2%)*%̈́%S%F%O #6 wÌ%zʥ% ' '!( 4 '6'!;( 4 '6y2(>\('(*2(^#V!(!(>:(O:(z(!A h((#~#^#VN#!A †((~#“("*^#=)V#=)****^#V#N#F#N#F"*__{*s+=*r+=*s+=*!W*+*u*> >*!D !D*#%BAD CHANNEL NUMBEß*W+W+***W+W+W+\+Ö*E+N+W+W+W+W+W+W+W+W+_/+|¸***:.+*ʿ*2.+ô*!**à*:.++/+| +*+7>| +2.++2.++*C+|! "C+__7:+y+\!+#>2+:+˜+\!+#_<2+!~ɀ&INPUT FILE REAP PI/2-ABS(L) THEN 330 140 LHACOS = - TAN(L)*TAN(DEC) 150 AZCOS = SIN(DEC)/COS(L) 160 LHA =PI/2-ATN(LHACOS/(1-LHACOS^2)^.5) 170 AZ = PI/2-ATN(AZCOS/(1-AZC0S^2)^.5) 180 AZ = AZ/PI*180 190 LHA=LHA/PI*12 200 LHA = 24-LHA 210 PRINT "RISING AZMUTH =";AZ;"DEGREES, SETTING AZMUTH =";360-AZ;"DEGREES" 220 PRINT "LHA RISING =";LHA;"HOURS, LHA SETTING =";24-LHA;"HOURS" 230 PRINT "OBJECT VISIBLE FOR";2*(24-LHA);"HOURS." 240 PRINT "ALTITUDE AT UPPER CULMINATION (TRANSIT) =";90-ABS(L-DEC)*180/PI;"DEGREES" 250 IF DEC = L THEN PRINT "CULMINATION AT ZENITH" 260 IF DEC = L THEN GOTO 330 270 IF DEC>L THEN PRINT "TRANSIT NORTH OF ZENITH" ELSE PRINT"TRANSIT SOUTH OF ZENITH" 280 PRINT 290 PRINT "DO YOU WANT ANOTHER OBJECT ? Y/N?" 300 INPUT ANS$ 310 IF ANS$ = "Y" GOTO 10 320 END 330 IF SGN(DEC) = SGN(L) THEN PRINT "OBJECT DOES NOT SET" 340 IF SGN(DEC) = -1*SGN(L) THEN PRINT "OBJECT DOES NOT RISE ABOVE HORIZON" 350 GOTO 240 ) THEN PRINT "OBJECT DOES NOT SET" 340 IF SGN(DEC) = -1*SGN(L) THEN PRINT "OBJECT DOES NOT RISE ABOVE HORIZON" 350 GOTO RISE-SET.DOC ****************************************************************************** RISE-SET.BAS IS A MBASIC PROGRAM TO CALCULATE THE AZMUTH AND LOCAL HOUR ANGLE OF THE RISE AND SET OF ASTRONOMICAL BODIES THE ALTITUDE OF UPPER CULMINATION (TRANSIT) OF THOSE BODIES WHICH DO ACTUALLY RISE AND THE DIRECTION FROM ZENITH OF TRANSIT. IT WAS WRITTEN BY MIKE FINERTY APRIL 18, 1985, USING FORMULAE FROM SMART'S TEXTBOOK ON SPHERICAL ASTRONOMY, AND A LITTLE OF HIS OWN RECCONING. ****************************************************************************** THE PROGRAM WILL RETURN A "Illegal function call" ERROR IF THE ASTRONOMICAL BODY IN QUESTION DOES NOT RISE OR DOES NOT SET, THAT IS IF THE BODY IS IN THE CIRCUMPOLAR REGION AND IS ALWAYS ABOVE THE HORIZON OR ALWAYS BELOW THE HORIZON, THE INTERSECTION OF ITS PATH WITH THE HORIZON IS "IMMAGINARY" AND THE SOLUTION REQUIRES THE USE OF COMPLEX NUMBERS (WHICH MBASIC DOESN'T LIKE), SO IT RETURNS AN ERROR MESSAGE. I LABORED IN VAIN TO HAVE IT RETURN A MORE MEANINGFUL ERROR MESSAGE, BUT IT APPEARS THAT WE ARE STUCK WITH "Illegal function call." AFTER ALL. MIKE FINERTY, TUCSON. APRIL 18, 1985.TH AND LOCAL HOUR ANGLE OF THE RISE AND SET OF ASTRONOMICAL BODIES THE ALTITUDE OF UPPER CULMINATION (TRb PROGRAM "RISE-SET.BAS," A MBASIC PROGRAM CALCULATING THE LOCAL HOUR ANGLE^b AND THE LOCAL AZMUTH OF THE RISING OF AN ASTRONOMICAL BODYb GIVEN ITS DECLINATION AND THE OBSERVERS LATITUDEb( REVISED 4-19-1985, MIKE FINERTY, TUCSON!c2 ***********************************************************************4c<PI U–hIJcFCONST 5]?YxcP "DECLINATION OF BODY IN DEC. DEGREES";DcZ "LATITUDE OF OBSERVER IN DEGREES.MINS "; LATcdDEC DPIcnLATITUDE d<(LAT (LAT))(LAT)dxL LATITUDEPIdTEST (DEC)2d TEST PI(L) OdLHACOS (L)(DEC)idAZCOS (DEC)(L)dLHA PI(LHACOS(LHACOS))dAZ PI(AZCOS(AZC0S))dAZ AZPIdLHALHAPI dLHA LHA-C. 140 REM THIS VERSION BY M. P. FINERTY, MAY 31, 1984 150 REM ALTITUDE AND AZMUTH FROM RA AND DEC + LST 160 LET P=3.141592654 170 LET R1=P/180 175 CONSOLE 180 PRINT "INPUT OBJECT NAME" 185 LPRINTER 190 INPUT N$ 200 PRINT N$ 205 CONSOLE 210 PRINT "INPUT RIGHT ASCENTION" 220 INPUT "H= ",A1 230 INPUT "M= ",A2 240 INPUT "S= ",A3 250 PRINT "RA = ";A1;" HRS ";A2;" MINS ";A3;" SECS" 260 PRINT "IS THIS CORRECT? Y?/N?" 270 INPUT A$ 280 IF A$="N" THEN 210 290 IF A$<>"Y" THEN 210 300 GOSUB 1340 310 LET R=A*15*R1 315 LPRINTER 320 PRINT "RIGHT ASCENTION IN DECIMAL DEGREES IS: ";R/R1 325 CONSOLE 330 PRINT "INPUT DECLINATION" 340 INPUT "DEGREES ",A1 350 INPUT "MINUTES ",A2 360 INPUT "SECONDS ",A3 370 PRINT "IS THIS NORTH OR SOUTH, N?/S?" 380 INPUT S$ 390 PRINT "DECLINATION = ";A1;" DEG ";A2;" MIN ";A3;" SEC ";S$ 400 PRINT "IS THIS CORRECT? Y?/N?" 410 INPUT A$ 420 IF A$="N" THEN 330 430 IF A$<>"Y" THEN 330 440 GOSUB 1340 450 LET D1=A*R1 460 IF F9=2 THEN RETURN 465 LPRINTER 470 PRINT "DECLINATION IN DECIMAL DEGREES IS: ";D1/R1 474 CONSOLE 480 PRINT "INPUT LATITUDE" 490 INPUT "DEGREES ",A1 500 INPUT "MINUTES ",A2 510 INPUT "SECONDS ",A3 520 PRINT "IS LATITUDE NORTH OR SOUTH? N?/S?" 530 INPUT S$ 540 PRINT "LATITUDE IS: ";A1;" DEGREES ";A2;" MINUTES ";A3;" SECONDS ";S$ 550 PRINT "IS THIS CORRECT? Y?/N?" 560 INPUT A$ 570 IF A$="N" THEN 480 580 IF A$<>"Y" THEN 480 590 GOSUB 1340 600 LET L1=A*R1 605 LPRINTER 610 PRINT "OBSERVERS POSITION" 620 PRINT "LATITUDE IN DECIMAL DEGREES IS: ";L1/R1 625 CONSOLE 630 PRINT "INPUT LONGITUDE" 640 INPUT "DEGREES ",A1 650 INPUT "MINUTES ",A2 660 INPUT "SECONDS ",A3 670 PRINT "IS LONGITUDE EAST OR WEST? E?/W?" 680 INPUT E$ 690 IF E$="E" THEN LET S$="N" ELSE LET S$="S" 700 PRINT "LONGITUDE IS: ";A1;" DEGREES ";A2;" MINUTES ";A3;" SECONDS ";E$ 710 PRINT "IS THIS CORRECT? Y?/N?" 720 INPUT A$ 730 IF A$="N" THEN 630 740 IF A$<>"Y" THEN 630 750 GOSUB 1340 760 LET L2=A*R1 765 LPRINTER 770 PRINT "LONGITUDE IN DECIMAL DEGREES IS: ";L2/R1 780 GOSUB 1370 790 GOSUB 1470 800 GOSUB 1740 810 LET A1=H 820 LET A2=M 830 LET A3=S 840 LET S$="N" 850 GOSUB 1340 860 LET T=A*15*R1 870 REM T5 IS LHA 880 LET T5=T-R+L2 890 IF T5<0 THEN LET T5=T5+2*P 900 IF T5>2*P THEN LET T5=T5-2*P 910 PRINT "LOCAL HOUR ANGLE: ";T5/R1;" DEGREES" 920 LPRINTER 930 PRINT "LOCAL HOUR ANGLE: ";T5/R1;" DEGREES" 940 REM CALCULATE AZMUTH (A) AND ALTITUDE(H) 950 LET S1=SIN(L1)*SIN(D1) 960 LET S1=S1+COS(L1)*COS(D1)*COS(T5) 970 LET C1=1-S1*S1 980 IF C1>0 THEN LET C1=SQR(C1) 990 IF C1<=0 THEN 1020 1000 LET H=ATN(S1/C1) 1010 GOTO 1030 1020 LET H=SGN(S1)*P/2 1030 LET C2=COS(L1)*SIN(D1) 1040 LET C2=C2-SIN(L1)*COS(D1)*COS(T5) 1050 LET S2=-(COS(D1)*SIN(T5)) 1060 IF C2=0 THEN LET A=SGN(S2)*P/2 1070 IF C2=0 THEN 1120 1080 LET A=ATN(S2/C2) 1090 IF S2<0 AND C2>0 THEN LET A=2*P-ABS(A) 1100 IF S2<0 AND C2<0 THEN LET A=P+ABS(A) 1110 IF S2>0 AND C2<0 THEN LET A=P-ABS(A) 1120 IF A<0 THEN LET A=A+2*P 1130 IF A>2*P THEN LET A=A-2*P 1135 CONSOLE 1140 PRINT "ALTITUDE: ";H/R1 1150 IF H<=0 THEN PRINT "DOWN" ELSE PRINT "UP" 1160 PRINT "AZMUTH: ";A/R1 1170 PRINT "--ooOOOoo--" 1180 PRINT 1190 PRINT 1195 LPRINTER 1200 PRINT 1210 PRINT "ALTITUDE IN DEGREES: ";H/R1;" AZMUTH IN DEGREES: ";A/R1 1220 PRINT "--ooOOOoo--" 1230 PRINT 1240 PRINT 1245 CONSOLE 1250 PRINT "DO YOU WANT ANOTHER TIME AND DAY? Y?/N?" 1260 INPUT A$ 1270 IF A$="Y" THEN 780 1280 PRINT "DO YOU WANT ANOTHER OBJECT?" 1290 INPUT A$ 1300 LET F9=2 1310 IF A$="Y" THEN GOSUB 30 ELSE END 1320 GOTO 870 1330 REM HERE BEGIN THE SUBROUTINES 1340 IF S$<>"S" THEN LET S=1 ELSE LET S=-1 1350 LET A=S*(A1+A2/60+A3/3600) 1360 RETURN 1370 REM CALCULATE GST 1375 CONSOLE 1380 PRINT "INPUT YEAR, MONTH, DAY, GREGORIAN CALENDAR" 1390 INPUT "YEAR ",Y 1400 INPUT "MONTH ",M 1410 INPUT "DAY ",D2 1420 PRINT Y;" YEAR ";M;" MONTH ";D2;" DAY " 1430 PRINT "IS THIS CORRECT? Y?/N?" 1440 INPUT A$ 1450 IF A$="N" THEN 1380 1460 RETURN 1470 IF A$<>"Y" THEN 1380 1475 LPRINTER 1480 PRINT "DATE OF OBSERVATION OR PROJECTION" 1490 PRINT D2;" DAY ";M;" MONTH,";Y 1500 REM CALCULATE FRACTION OF A DAY 1505 CONSOLE 1510 PRINT "INPUT HOURS MINUTES AND SECONDS, GREGORIAN CALANDAR" 1520 INPUT "HOURS ",A1 1530 INPUT "MINUTES ",A2 1540 INPUT "SECONDS ",A3 1550 PRINT A1;" HOURS ";A2;" MINUTES AND ";A3;" SECONDS" 1560 PRINT "IS THIS CORRECT? Y?/N?" 1570 INPUT A$ 1580 IF A$="N" THEN 1510 1590 IF A$<>"Y" THEN 1510 1595 LPRINTER 1600 PRINT "TIME OF OBSERVATION OR PROJECTION" 1610 PRINT A1;":";A2;":";A3 1620 LET F1=(A3+60*A2+3600*A1)/86400-0.5 1630 LET J=-INT(7*(INT((M+9)/12)+Y)/4) 1640 LET S=SGN(M-9) 1650 LET A4=ABS(M-9) 1660 LET J1=INT(Y+S*INT(A4/7)) 1670 LET J1=-INT((INT(J1/100)+1)*3/4) 1680 LET J=J+INT(275*M/9)+D2+J1 1690 LET J=J+1721028+367*Y 1695 CONSOLE 1700 PRINT "JULIAN DAY ";J;" FRACTION OF A DAY ";F1 1705 LPRINTER 1710 PRINT 1720 PRINT "JULIAN DAY NUMBER: ";J;" FRACTION OF DAY: ";F1 1730 RETURN 1740 REM CDOMPUTE GREENWICH MEAN SIDERIAL TIME 1750 LET D=J-2451545 1760 LET T=D/36525 1770 LET T1=INT(T) 1780 LET J0=T1*36525+2451545 1790 LET T2=(J-J0+0.5)/36525 1800 LET S0=24110.54841+184.812866*T1 1810 LET S0=S0+8640184.81286*T2 1820 LET S0=S0+(0.093104*T*T) 1830 LET S0=S0-(0.0000062*T*T*T) 1840 LET S0=S0/86400 1850 LET S1=INT(S0) 1860 LET S0=S0-S1 1870 LET S0=24*(S0+(F1+0.5)*1.002737909) 1880 IF S0<0 THEN LET S0=S0+24 1890 IF S0>24 THEN LET S0=S0-24 1900 LET H=INT(S0) 1910 LET M1=60*(S0-H) 1920 LET M=INT(M1) 1930 LET S=60*(M1-M) 1935 CONSOLE 1940 PRINT "GMST: ";H;" HOURS ";M;" MINUTES AND ";S;" SECONDS" 1950 RETURN SGN(M-9) 1650 LET A4=ABS(M-9)%vSvS*+>H>HIG***PROGRAM STARFIX***!1DIJ>H>H>H>H>H>H>H>H>H>H>H>Hï|O>!RͨO>H>HI OBJECT NAME: !D>H >H >H>H>H>H>H>H>H>H>H>H>H>H>H>H>H>H>H>H>H>H>H >H >H!>H!èڢ0͍O>!jQͨO>H">H"͍OjQ͍O2B>!qQͨO>H#>H#>H$>H$IINPUT OBJECT NAME!DIJ>H%>H%>H&>H&IIGIy3E!%SKIyJ>H'>H'I!%SDIJ>H(>H(>H)>H)IþINPUT RIGHT ASCENTION!DIJ>H0>H0IIFH= IGIy3E!&R8IyJ>H1>H1IIFM= IGIy3E!*R8IyJ>H2>H2IIFS= IGIy3E!.R8IyJ>H3>H3IÓRA = !D|O&R2ë HRS !D|O*R2 MINS !D|O.R2 SECS!DIJ>H4>H4IIS THIS CORRECT? Y?/N?!DIJ>H5>H5IIGIy3E!RKIyJ>H6>H6eN!R!c1ͤ8yØ>H7>H7ÌY!R!1ͤ8ʠØ>H8>H8>H9>H9͍OQ͍O@͍OqQ@>!QͨO>H@>H@>HA>HAI3'RIGHT ASCENTION IN DECIMAL DEGREES IS: ! D͍OQ͍OqQ2BR4IJ>HB>HB>HC>HCIÇINPUT DECLINATION!uDIJ>HD>HDIIFDEGREES IGIy3E!&R8IyJ>HE>HEIIFMINUTES IGIy3E!*R8IyJ>HF>HFIIFSECONDS IGIy3E!.R8IyJ>HG>HGIÃIS THIS NORTH OR SOUTH, N?/S?!eDIJ>HH>HHIIGIy3E!RKIyJ>HI>HIIDECLINATION = !D|O&R2 DEG !D|O*R2 MIN !D|O.R2, SEC !&D!RDIJ>HP>HPInIS THIS CORRECT? Y?/N?!WDIJ>HQ>HQIIGIy3E!RKIyJ>HR>HRüN!R!1ͤ8e>HS>HSY!R!1ͤ8e>HT>HT>HU>HU͍OQ͍OqQ@>!QͨO>HV>HV@ |OR|O< ͙1{8[ >HV>HW>HW>HX>HXIä #DECLINATION IN DECIMAL DEGREES IS: ! D͍OQ͍OqQ2BR4IJ>HY>HY>H`>H`I INPUT LATITUDE! DIJ>Ha>HaIIFDEGREES IGIy3E!&R8IyJ>Hb>HbIIFMINUTES IGIy3E!*R8IyJ>Hc>HcIIFSECONDS IGIy3E!.R8IyJ>Hd>HdI !IS LATITUDE NORTH OR SOUTH? N?/S?! DIJ>He>HeIIGIy3E!RKIyJ>Hf>HfIU LATITUDE IS: !G D|O&R2q DEGREES !g D|O*R2Í MINUTES ! D|O.R2é SECONDS ! D!RDIJ>Hg>HgI IS THIS CORRECT? Y?/N?! DIJ>Hh>HhIIGIy3E!RKIyJ>Hi>Hi9 N!R!7 1ͤ8M >Hp>Hp` Y!R!^ 1ͤ8t >Hq>Hq>Hr>Hr͍OQ͍OqQ@>!QͨO>Hs>Hs>Ht>HtI OBSERVERS POSITION! DIJ>Hu>HuI% LATITUDE IN DECIMAL DEGREES IS: ! D͍OQ͍OqQ2BR4IJ>Hv>Hv>Hw>HwIw INPUT LONGITUDE!g DIJ>Hx>HxIIFDEGREES IGIy3E!&R8IyJ>Hy>HyIIFMINUTES IGIy3E!*R8IyJ>H>HIIFSECONDS IGIy3E!.R8IyJ>H>HIv IS LONGITUDE EAST OR WEST? E?/W?!UDIJ>H>HIIGIy3E!2RKIyJ>H>HE!2R!1ͤ8>HN!!R͞J>HS!!R͞J>H>HI*LONGITUDE IS: !D|O&R2F DEGREES !<D|O*R2b MINUTES !XD|O.R2~ SECONDS !tD!2RDIJ>H>HIIS THIS CORRECT? Y?/N?!DIJ>H>HIIGIy3E!RKIyJ>H>HN!R! 1ͤ8"W >H>H5Y!R!31ͤ8IW >H>H>H>H͍OQ͍OqQ@>!QͨO>H>H>H>HI!LONGITUDE IN DECIMAL DEGREES IS: !D͍OQ͍OqQ2BR4IJ>H>Hͥ>H>H>H>H!'>H>H͍OQ͆,>!&RͨO>H>H|OR>!*RͨO>H>H|O"R>!.RͨO>H>H{N!y!R͞J>H>H>H>Hî͍OQ͍O@͍OqQ@>!QͨO>H>H>H>H͍OQ͍OQ͟?͍OQ͚?>!QͨO>H>H͍OQ͍O21̀8]>H@͍OQ͍O9͍OjQ@͚?>!QͨO>H>Hu͍OQ͍On͍OjQ@A1̀8ʾ>Há͍OQ͍O͍OjQ@͟?>!QͨO>H>HILOCAL HOUR ANGLE: !D͍OQ͍OqQ2BR4  DEGREES!DIJ>H>H>H>HIPLOCAL HOUR ANGLE: !=D͍OQ͍OqQ2BR4s DEGREES!jDIJ>H >H >H>H͍OQ͆,c/X,͍OQ͆,c/X,@>!QͨO>H>H͍OQ͍OQ͆,Q/X,͍OQ͆,Q/X,@͍OQ͆,Q/X,@͚?>!QͨO>H>H)͍O"͍OQ͍OQ@͟?>!QͨO>H>H^͍OQ͍OWA1̀8ʎ>H͍OQ͆,͹-X,>!QͨO>H>Hæ͍OQ͍O 1̀8ʼ>H>H͍OQ͆,͍OQ͆,͚;1.X,>!QͨO>H>HA>H>H͍OQ͆,R-X,͍OjQ@͍O 2B>!QͨO>H>H͍OQ͆,Q/X,͍OQ͆,c/X,@>!RͨO>H>H͍OR͍OQ͆,c/X,͍OQ͆,Q/X,@͍OQ͆,Q/X,@͟?>!RͨO>H >H ͍OQ͆,Q/X,͍OQ͆,c/X,@y1>! RͨO>H!>H! ͍OR͍OU1̀8W>H!1͍O R͆,R-X,͍OjQ@͍O*2B>!QͨO>H">H"o͍OR͍OhU1̀8ʅ>H#>H#͍O R͆,͍OR͆,͚;1.X,>!QͨO>H$>H$͍O R͍O21f8͍OR͍OA1f81͛86>H$͍O ͍OjQ@͍OQ͆,͕-X,͟?>!QͨO>H%>H%NX͍O R͍OG21f8͍OR͍OQ21f81͛8ʦ>H%͍OjQ͍OQ͆,͕-X,͚?>!QͨO>H&>H&þ͍O R͍OA1f8͍OR͍O21f81͛8>H&͍OjQ͍OQ͆,͕-X,͟?>!QͨO>H'>H'.͍OQ͍O'21̀8o>H'R͍OQ͍OK͍OjQ@͚?>!QͨO>H(>H(Ç͍OQ͍O͍OjQ@A1̀8>H(ó͍OQ͍O͍OjQ@͟?>!QͨO>H)>H)>H0>H0I ALTITUDE: !D͍OQ͍OqQ2BR4IJ>H1>H15͍OQ͍O. 1̀8m>H1I]DOWN!XDIJÍ>H1IÀUP!}DIJ>H2>H2IíAZMUTH: !D͍OQ͍OqQ2BR4IJ>H3>H3I --ooOOOoo--!DIJ>H4>H4IIJ>H5>H5IIJ>H6>H6>H7>H7IIJ>H8>H8IÃALTITUDE IN DEGREES: !mD͍OQ͍OqQ2BR4ò AZMUTH IN DEGREES: !D͍OQ͍OqQ2BR4IJ>H9>H9I --ooOOOoo--!DIJ>H@>H@IIJ>HA>HAIIJ>HB>HB>HC>HCIÀ'DO YOU WANT ANOTHER TIME AND DAY? Y?/N?!XDIJ>HD>HDIIGIy3E!RKIyJ>HE>HEY!R!1ͤ8>HF>HFIDO YOU WANT ANOTHER OBJECT?!DIJ>HG>HGIIGIy3E!RKIyJ>HH>HHe|Oa>!RͨO>HI>HIÅY!R!1ͤ8ʣ>HIí>HI>HP>HP>HQ>HQ>HR>HRS!R!1ͤ8>HR|O>!"RͨO,>HR|Oͽ1>!"RͨO>HS>HSDN |O"RX,|O&RX,|O*RX,͍O=2B͚?|O.RX,͍OG2B͚?@>!QͨO>HT>HT>HU>HU>HV>HV>HW>HWI*INPUT YEAR, MONTH, DAY, GREGORIAN CALENDAR!DIJ>HX>HXIIFYEAR IGIy3E!R8IyJ>HY>HYIIFMONTH IGIy3E!R8IyJ>H`>H`IIFDAY IGIy3E!R8IyJ>Ha>HaI|OR2 YEAR !D|OR2 MONTH !D|OR2 DAY ! DIJ>Hb>HbIMIS THIS CORRECT? Y?/N?!6DIJ>Hc>HcIIGIy3E!RKIyJ>Hd>HdÛN!R!1ͤ8ʯ>He>He>Hf>HfY!R!1ͤ8>Hg>Hg>Hh>HhI, !DATE OF OBSERVATION OR PROJECTION! DIJ>Hi>HiI|OR2^  DAY !X D|OR2x  MONTH,!p D|OR2IJ>Hp>Hp>Hq>Hq>Hr>HrI 3INPUT HOURS MINUTES AND SECONDS, GREGORIAN CALANDAR! DIJ>Hs>HsIIFHOURS IGIy3E!&R8IyJ>Ht>HtIIFMINUTES IGIy3E!*R8IyJ>Hu>HuIIFSECONDS IGIy3E!.R8IyJ>Hv>HvI|O&R2! HOURS !!D|O*R2" MINUTES AND !!D|O.R2" SECONDS!"DIJ>Hw>HwIV"IS THIS CORRECT? Y?/N?!?"DIJ>Hx>HxIIGIy3E!RKIyJ>Hy>Hyä"N!R!"1ͤ8ʸ"ð >H>H"Y!R!"1ͤ8"ð >H>H>H>HI&#!TIME OF OBSERVATION OR PROJECTION!#DIJ>H>HI|O&R2T#:!R#D|O*R2h#:!f#D|O.R2IJ>H>HÕ#ß# é#ó#|O.RX,͍O#|O*RX,@͚?͍O#|O&RX,@͚?͍O#2B͍O#͟?>!xQͨO>H>H$$$#$|O $|OR|O$9|O$͚;ʹ,|OR9O:|O$͚;ʹ,X,y1>!QͨO>H>Hy$|OR|Ou$$9R->!"RͨO>H>Hæ$|OR|O$$9͕-X,>!QͨO>H>H$|OR|O"R͍OQ͆,|O$͚;ʹ,O:9ʹ,X,>!QͨO>H>H%#%*%1%͍OQ͆,|O%͚;ʹ,|O%9|O&%O:|O-%͚;ʹ,X,y1>!QͨO>H>HÂ% É%͍OQ|O~%|ORO:|O%͚;ʹ,X,͚?|ORX,͚?͍OQ͚?>!QͨO>H>H% % ͍OQ͍O%͚?͍O%|ORX,@͚?>!QͨO>H>H>H>HIB& JULIAN DAY !6&D͍OQR4h& FRACTION OF A DAY !T&D͍OxQR4IJ>H>H>H>HIIJ>H>HI&JULIAN DAY NUMBER: !&D͍OQR4& FRACTION OF DAY: !&D͍OxQR4IJ>H>H>H>H>H>H@'d͍OQ͍O9'͟?>!QͨO>H>Hm'͍OQ͍Of'2B>!QͨO>H>H͍OQ͆,ʹ,X,>!QͨO>H>Hþ''d͍OQ͍O'@͍O'͚?>!QͨO>H>H'(͍OQ͍OQ͟?͍O'͚?͍O(2B>!QͨO>H>HD(]2N(v͍O=(͍OG(͍OQ@͚?>!QͨO>H>HÃ(ָ͍OQ͍O|(͍OQ@͚?>!QͨO>H>Hø(OY͍OQ͍O(͍OQ@͍OQ@͚?>!QͨO>H>H( /6P͍OQ͍O(͍OQ@͍OQ@͍OQ@͟?>!QͨO>H>H:)͍OQ͍O3)2B>!QͨO>H >H ͍OQ͆,ʹ,X,>!QͨO>H>H͍OQ͍OQ͟?>!QͨO>H>Hî)ø))Y>Ϊ͍O)͍OQ͍OxQ͍O)͚?͍O)@͚?@>!QͨO>H>H*͍OQ͍O*21̀8@*>H+*͍OQ͍O$*͚?>!QͨO>H>HX*͍OQ͍OQ*A1̀8ʑ*>H|*͍OQ͍Ou*͟?>!QͨO>H>H͍OQ͆,ʹ,X,>!QͨO>H>H*͍O*͍OQ͍OQ͟?@>!QͨO>H>H͍OQ͆,ʹ,>!RͨO>H>H +|O+͍OQ͆,|OR$9O:>!"RͨO>H>H>H>HIl+GMST: !e+D͍OQR4Æ+ HOURS !~+D|OR2æ+ MINUTES AND !+D|O"R2+ SECONDS!+DIJ>H >H >H!Copyright (C) 1979, By Topaz programming. All rights reserved. From here on protected by End User License.  "|,!,>ͨO:,W2,z2,!,>[O!",!,>ͨO:,W:,2,!,>[O!":-!I->ͨO:L-,!I->[O!,>[O9!I->ͨO,":-!I->ͨO:L-2Q-:I-=--!I-4#~w-:I--!L-:Q-G~w!I-[O!!M->[O*:-"-!->ͨO:--:-p->!>2-!->[O*-!->[O*-"-!->ͨO:-2-!->[O!"!.>20.!$.>ͨO!$.>[O!(.>[O͚;!,.>ͨO!$.>[O!,.>[O͚;!,.>[O9!(.>[O͚;!0.5 .!,.>ͨO-!"$/!'/>ͨO:*/2+/:*/2*/!'/>[O!-/>[Ö́7ڎ.!-/>[O!'/>[O͚;!'/>ͨO!1/>[O͔.$9/͔./"/!5/>[O!9/>[O!=/>[O!A/>[O!E/>[O!I/>[O!M/>[O>2,/!'/>[OO:!'/>[OO:9:,/=.!'/>[OO:!:+/#/!'/>ͨO:*/2*/!'/>[O!":"0!0>[O9g/"0! 1>ͨO:12121!0>[O! 1>[Ö́7Ұ/! 1>[O!0>[O$9! 1>ͨO|/!0>[O! 1>[Ö́70!0>[O! 1>[Ö́7/!0>[O! 1>[O$9! 1>ͨO0! 1>[O!0/:10:121:12121! 1>[O!0>[OO:! 1>ͨO! 1>[O! 1>[OO:!1>ͨO!0>[O!0>[O!1>[O!1>[O!1>[O!1>[OO:$9!1>[OO:$9!1>[OO:$9!1>[OO:$9! 1>[OO:! 1>ͨO:1!1w! 1>[O!]3|%zW{_"v1!7>r1r1p1"v1!7>r1p1"v1!7>r1r1>r1"v1!7>r1p1"v1!7>r1>"8!"1!CK>ͨO:IK2IK!CK>[O!"1̈́7>ʶ1ô1"1̈́7>¶1>G8!"1!CK>ͨO:FK2FK!CK>[O!"16>11"16>1>8!>2Q4"142CK2/4244!74>ͨO:84ʙ3::42042:4!74>[O>+J!E4>[Ö́7]2!A4>[O͚;!/4482>+J!I4>[Ö́7҂2!A4>[OO:!/45]2:44›2/244!M4>[O982!74>ͨO!/4~2/<ҵ2^~w>264{254!;43w#2+~02:04> 2>-2CK:54323:54=2/4>254>264!;4DK:543=254~# 3>.:64Y3=264~# 3!DK;4:54/<6.#60=?3:54G:64G#wO3+~0Y3.g3#6:/4ʙ36E#+|3/<-p# ډ3À3:Oxʕ30w#q#6!CK~°360#6>2BKû3#~°3x2BK:Q43:G3:FLO>!BKF*14!74>[O!A4>[OO:!74>ͨO234!74~!4!4=w!:4~w+ 4:342343!74<:3407>2UM"62CK2626!6>ͨO:65:62626!6>[O>+J!6>[O!7ڮ4!6>[O2B!64É4>+J!6>[O!74!6>[O@!65î4:64/26!6>[O͚?É4!6>ͨO!6~4/< 5^~w> 26{26!6 46w#5+~0#5:6> 65>-2CK:6U55:6=26>26> 26!6DK:6m5=26~#[5>.:6ʪ5=26~#q5!DK6:6/<6.#60=5:6G:6G#w 5+~0ʪ5.ʸ5#6:656E#+5/<-p# 55 260Ox2650w#q#6!CK~ 660#6>2BK6#~ 6x2BK:UM06:G06:FLO>!BKF*6!6>[O!6>[O@!6>ͨO26!6~z6z6=w!6~w+ h6:626U6!6ͫC:60Ѵ$5 `"6!JL6͞J!BK6͞J!KLCK~7O66#6! ~6Oz6#66 6676"7!CK>ͨO!JK>ͨO!PK:IKG7~À7:IKJK!CK7Z7*7!IKPK~w!DKKKs7€7#u7!"7!CK>ͨO!GK>ͨO!JK:FKҪ7~7:FKGK!CK7ʽ7*7!FKJK~w!DKHK77#7!78O7y?"8!88!8!TrueFalse"68!9808!@8>[O!"[8!^8U8!b8>[O!"x8̀8!v8!!>Â8>"8!CKͨO:DK>8/!|>"8{ʴ88!BK6͞J*8:CK8}T8t8Y8y88>>"9!9k=:9W:929*99w# 9>&9>2S9"P9![9>ͨO!V9>ͨO2Z92_9`9!V9>[O!9!V9$:![9$:*T9|9:T99!Z91:Í9!_91:!_9Z9+–9*T9}}99!Z91:>2T9!Y97w9+¾9:T9G!Y9~w!V9<:W92Y9!Y9~_w!^9~Ww:S9W"T9!V9[9NG:x:$::4#~w(:~/w+4:~w+~w E:" ;!(;>ͨO!$;>ͨO:);;:%;;!+;~_w!';~Ww",;:$;2.;!; w#‘:ã:ʾ:7;F;Ҝ:!!;';w+ ²:Ü::.;G:(;O2;x::;:x;*,;!6;>͉;!3;>[O* ;U;*,;!;:;͉;!;>[O!!/;>[O* ;!';~w+ =;!);~w# L;!!;7wf;+Z;0!;~+~=w!!;~w+x; h;2;zW~ww"ͨO!<>ͨO:<<:<[O*w!<<*[O!!<>[O* DIVISION BY ZER!<=#~+=+~=w~w~w+= =6:>=+~6# 6=>w+>I=~+2j?#"k?>+2m?~#= = =E²=~+=-=+>+2m?#~={_~W?_#=+6E:m?+{=/<2?͍>x//2n?!n?ͫC:j?+*>:t?2t?:?_>!??>/<2?!?"?>[O:?=g>2?*?>[O@G>!?>[O!n?>[O@*SM>ͨO*SMC*SM~w2i?G!o?>6#=™>*k?~E7?#"k?.º>>2i?à>!o?u?~#>!t?t?H?!t?t?H?!t?z?H?!t?t?H?W?2z?!y?>6+=>!t?z?H?:i??  >:i?7?*k?!?E7?.7?4'?:o?e?!t?t?H?ɯw+L?0_? >7ѯ7>á?>2?"?!?>ͨO!?>ͨO2?2??!?>[O!j@!?ͥ@!?ͥ@*?|@:?@!?ʹ@@!?ʹ@!??+@*?}}7@7@!?ʹ@>2?!?7wK@+?@:?G!?~w!?ͫC:?2?!?~_w!?~Ww:?W"?!??NG@xҟ@ͥ@Ç@~ͨO!A>ͨO:AA:AA!A~_w!A~Ww"A:A2A!Aw#A0&AAAAAA!AA w+ 5AA:AG:AO2AxvA:AvAxA*A!A>!B!A>[O*AA*A!A:A!B!A>[O!!A>[O*A!A ~w+ A!A~w# A!A 7wA+A`!A~+~=w!A ~w+B B2AzW~ww"*C!C>ͨO!C>ͨO:C9C:C-C!C~_w!C~Ww"C:C2CcC0ÇB!CxC ʲB!CxC!CC+B?vB!CC+¥BvB:Co:CgG2C|BxBx-C*C!bC>̓C!\C>[O**C!C7wC+B!ClC!C4#>w!CͫC!CC*C!C:C̓C!C>[O!!UC>[O**C!?CëH DIVISION BY ZER!ClC!C~w# oC~w+zCzW~ww0~2C#~C+~=w~w~w+C ±C6:C+~6# C>w+>C~F*ND!VDuDERROR IN INPUT, RE-ENTER PLEAS:OMJ:OMOIyJ!DI:?K3E??!DuDNUMBER TO LARGE/SMAL"E:BKOE*@K~ D #ED~,E E EE~D+E-E #)ED~, E# >0)E~,EDE~,)E# "@Ky2BKO>M6FO2?K!CK"@K2BKOڔE ʔEʽEʪEEEʝEwF:MMʍE~VM~#PE>2BK6:LM>xExPE+~VMPExPE+>VM> VM>VMPE͔E>#VMJ!BK>FPE>#VMJ:?K3E!FCI:OMOG:?K3ETOO MANY CHARECTERS. MAX IS 252?K!CK"@K2BK^#V"F>!^F*F*@K*@K~ ʁFʜF#"@K:BK2BKPF!FëH>!F*F*@K*@K6!CK"@K#"@K:BK2BKҏF>2BKÏF-ASCII FIL~F#VMF#~#yJI2G~G2G#~GVM!G5GF:GIyJ!GI?2G"DGGG1K2G!G͞J!G"G!G͐H:FL!*G@G~#.,-$*^+/&!\{G#~:FLO~VM#JGN# 6~ʣH#ÙH6#ãH^"#:HHiI:OMJ**H2@I~2PM#~2QM#:@I!AII:OMO>[VM͚I>]VM> VM:BI=2BII>2BIyJO2I:AI/2AIO5I^"#iI!\II:OMJ WARNING ONL:OMOJI!II:QM!II͚I ERRO IN LINE*PM|0VM|0VM}0VM}0VM!NM>w~IVM!NM4#IVMy2FL O:FLO!M ~J> VM< JO> VM> VM2NM"eJhJ:BK!CK[O:@KKJ:BK!:BK!CK[O:@KdJ:BK!!"J2@KʊJ!JO  ~2BK!CKͨO!1K2BK!BK͞JÆJ"KzJOFxJy¼J#6J#wJJ ¼J#6JO~JJ #6#yͨO*K"KBK|K}KqJ!CKy2BKͨO*KKJFBKO #6 w"Kz;K qM qM!M 4 }M6}M!M 4 }M6y2M>MʐMO2M^#V!M!M>:MO:MN!A M)N#~#^#VN#!A N)N~#)N"O^#=wOV#=cO*O*O^#V#N#F#N#F^#V#N#F#N#F#N#F#N"O__{Os+=Or+=Os+=O!PO&P> O!D !OëH%BAD CHANNEL NUMBEPPQQÄPÛPÌPQQQ QGPPPQQQQQQQQ_P|iP*eP:P{PpP2PeP!PÜPQP:P·PP|¾P*P7>|P2P÷P2P÷P*P|! "P__7:XQ*Q\!YQʫH>2XQ:WQIQ\!YQ«H_<2WQ!~ɀ&INPUT FILE REAPPPP24 THEN S0 = S0 - 24 530 LST = S0 - L2 540 LSTDEG = LST*15 550 IF LST < 0 THEN LST = LST + 24 560 PRINT "LOCAL SIDERIAL ANGLE (ARIES) IN DECIMAL DEGREES: ";LSTDEG 570 H = INT(LST) 580 M1 = 60 * (LST - H) 590 M = INT(M1) 600 S = 60 * (M1 - M) 610 PRINT "LOCAL SIDERIAL TIME:";H;"HRS";M;"MINS";S;"SECS" 620 LPRINT "LOCAL SIDERIAL TIME:";H;"HRS";M;"MINS";S;"SECS" 630 PRINT "DO YOU WANT A DIFFERENT TIME? Y/N?" 640 INPUT ANS$ 650 IF ANS$ = "Y" THEN 100 660 END ;"HRS";M;"MINS";S;"SECS" 630 PRINT "DO YOU WANT A DIFFERENT TIME? Y/N?" 640 INPUT ANS$ 650 IF ANS$ = "Y" THEN 100 Perfect Format output for device: DiabloPS  P10 REM THIS IS PROGRAM "TIME" LOCAL SIDERIAL TIME IS CALCULATED 20 REM GIVEN THE DATE, HOUR, MINIT AND SECOND AND THE OBSERVER'S LONGITUDE 30 REM PROGRAM IS BY MIKE FINERTY MAKING USE OF PROGRAMS IN SKY AND TELESCOPE'S 40 REM COMPUTER SECTION. 50 DEFDBL A-Z 60 PRINT "PLEASE INPUT DATA: " 70 INPUT "LONGITUDE = ";L2 80 LPRINT "LONGITUDE = ";L2;" DEGREES" 90 L2 = L2/15 100 REM L2 IS NOW LONGITUDE IN DECIMAL HOURS 110 INPUT "YEAR =";Y 120 LPRINT "YEAR = ";Y 130 INPUT "MONTH = ";M 140 LPRINT "MONTH = ";M 150 INPUT "DAY = ";D2 160 LPRINT "DAY =";D2 170 REM THIS IS UNIVERSAL TIME 180 INPUT "HOURS =";A1 190 LPRINT "HOURS =";A1 200 INPUT "MINUTES =";A2 210 LPRINT "MINUTES =";A2 220 INPUT "SECONDS =";A3 230 LPRINT "SECONDS =";A3 240 F1 = (A3+60*A2+3600*A1)/86400!-.5 250 J = - INT(7*(INT((M+9)/12)+Y)/4) 260 S = SGN(M-9) 270 A4 = ABS(M-9) 280 J1 = INT(Y+S*INT(A4/7)) 290 J1 = - INT((INT(J1/100)+1)*3/4) 300 J = J + INT(275*M/9)+D2+J1 310 J = J+1.72103E+06+367*Y 320 J = J - 2 330 PRINT "JULIAN DAY: ";J;" FRACTION OF A DAY:";F1 340 LPRINT "JULIAN DAY: ";J;" FRACTION OF A DAY:";F1 350 REM CALCULATE GREENWICH SIDERIAL TIME FIRST 360 D = J -2.45155E+06 370 D = D - 5 380 T = D/36525! 390 T1 = INT(T) 400 J0 = T1*36525!+2.45155E+06 410 J0 = J0 -5 420 T2 =(J - J0 +.5)/36525! 430 S0 = 24110.54841#+184.812866#*T1 440 S0 = S0 + 8640184.812860001#*T2 450 S0 = S0 + (.093104*T*T) 460 S0 = S0 -(.0000062*T*T*T) 470 S0 = S0/86400! 480 S1 = INT(S0) 490 S0 = S0 - S1 ؈- 1 -  P500 S0 = 24*(S0+(F1+.5)*1.002737909#) 510 IF S0<0 THEN S0 = S0+24 520 IF S0>24 THEN S0 = S0 - 24 530 LST = S0 - L2 540 LSTDEG = LST*15 550 PRINT "LOCAL SIDERIAL ANGLE (ARIES) IN DECIMAL DEGREES: ";LSTDEG 560 H = INT(LST) 570 M1 = 60 * (LST - H) 580 M = INT(M1) 590 S = 60 * (M1 - M) 600 PRINT "LOCAL SIDERIAL TIME:";H;"HRS";M;"MINS";S;"SECS" 610 LPRINT "LOCAL SIDERIAL TIME:";H;"HRS";M;"MINS";S;"SECS" 620 PRINT "DO YOU WANT A DIFFERENT TIME? Y/N?" 630 INPUT ANS$ 640 IF ANS$ = "Y" THEN 100 650 END  6؈- 2 -  420 T2 =(J - J0 +.5)/36525! 430 S0 = 24110.54841#+184.812866#*T1 b PROGRAM "RISE-SET.BAS," A MBASIC PROGRAM CALCULATING THE LOCAL HOUR ANGLE^b AND THE LOCAL AZMUTH OF THE RISING OF AN ASTRONOMICAL BODYb GIVEN ITS DECLINATION AND THE OBSERVERS LATITUDEb( REVISED 4-19-1985, MIKE FINERTY, TUCSON!c2 ***********************************************************************4c<PI U–hIJcFCONST 5]?YxcP "DECLINATION OF BODY IN DEC. DEGREES";DcZ "LATITUDE OF OBSERVER IN DEGREES.MINS "; LATcdDEC DPIcnLATITUDE d<(LAT (LAT))(LAT)dxL LATITUDEPIdTEST (DEC)2d TEST PI(L) OdLHACOS (L)(DEC)idAZCOS (DEC)(L)dLHA PI(LHACOS(LHACOS))dAZ PI(AZCOS(AZC0S))dAZ AZPIdLHALHAPI dLHA LHA