CURVETXT0Q2 FCURVEFIT0Q2%7GAUSSRE 0Q2: NGAUSSRED0Q2G0MATMULT 0Q2YLMATMULTD0Q2i!MATINV 0Q2y jMATINVD 0Q2'GAUSSEL 002ZGAUSSELD0Q2#FFT 0Q2 >SYNDIV 0Q2 kNOTICE 002PC 002MWUT 002MVSD 002GMD 002BD 002@PD 002PND 002 pCSD 002fDCST 002 STD 002'jcSTT 002/ hFD 002;8LCC 002CLR 002Gr2MLR 002O@.NOR 002_GR 002oER 002wbSR 002iREMARKS 0Q2iaREMARKS BQSk5NOTICE BQSmNS-STATSDQC[ZvTCURVETXT.002  ! om#"$%'&)(+*,-./0132546789;:>=?<@ABCDEGFIHJLKMNPOQRSTUVeWvYXZ\[]^a`c_edbfhpgilnkjmrotquswpzx{y}v|~uydkw_caigqs}{~ !#'%+)/-15397=;?@AECIGJ MKQOSWU[Y]Ϟh6oh6i뽡'Gt:e뽡.w{%|zo9yx P2>_l l f`,}fel }>4#ez^yzJdd9:sz%Ҽꘓ@]XzVOoq=Tz;pr}I|%y2Srg{fWc\JWW3'_c[}_j9Y<B@w7W"gN]+7`SgfFC:5~LicZgfs~%r>uķ-ſed4b:74o9Dꘓ2>:;ƒ+3to䄷r!K4Kzn hd8zL*'.yśٝDNT-

u fof/dJ~q_h=p7`m#Rx2wX u7,Z^%=RxRx2Ixe> MoX> [o'2aauɡ|JRx)MR%/ר,iMJt_N/pHҼw-,ܥnƳȐҠS%~A몜Tlaa-u74w^iЩ9&yrR ˼Lnf+O55^&ygNz]񃷱Pg4Rf6n{zɮJbs?$Ίs*Qy%-Sxe_T YslW"gv5 1LgoXܻw@ͫ-ްtx`H6ne'O z;!X[)\9Qi·DYX,-ޔ}|%rK P*d>aEcQn$a.@uOa 7zJ)=$pCx0'UX9-_כK6y'(!( p7Ow= i:a;[xݷsVǜ! *p7O]xω^y\ ͞߅WvXZ W9ᕧaɕ-i}ox97Z?'Vx75CxNׄ͞Wv+gk[ٛxN|wXZ ͞և |qC ᕧaD6x7+ƒlnfOWafRf=09-9CxI\o9Y<p?q=T!QuqΖ X(y f6p7Znw҄WIaśmw-oxY o9XfglͶ.r}l-Mx]07[vWIPؾ7C1`M(o״vkv7kZʽ]?m{7kZ5-ׄWчBeoSJs59CxKzW?ɪD!VJ̮X;8q>$z%-ڹ 9XBx{7{.k`},~{7{7\78'ˬޖLo6JNqxeW foCGXs r[4TD9y:ײ[2VP)}=)ujdY-lD~Jֹy%F`Imo6wW"uxCb=-'la.u7D|*XWf Kk[줹JNa49c]JXe:u7^_}ǜ! *p7O]xω^y\ ͞߅WvXZ W9ᕧaɕv:CURVEFIT.002  ! "$#&%' (*)+,-/.102435m6798;:<=>?A@oBD~FCEN|HGIJLKNMPOQRSTWUXVeY{Z[\]}M`b_cae^gdhfkiljmpqpnorsyuvxwyz{t}|~rLw$Jl tdvuZ'=˯v I^p ! E=i>Bwvǒ=H`4HO@ :ʱ~z}ԓW;c Jܼs٧=;ב}] h.|Ygɠ@gkH.<{]o/2K؅fyͶ&^leffsǹ޺| z_ ^lo_Q_"?Ij㫍mI M6^(hgF膺O.R״Er(Կ4ܡ aJZa@4| HNt@qޚ>v}&UדI$zS]:ps\P[}N'٠hQV=_' #CY^O"'?x4z̟wC7G>hTQy]]tZeUx: 9۵̟Q7G>t84*(rL7*<ZV9i-?s')3l(g"L-; V$w\7,,K3LOѨQ?hQW WI!pr>=!'r̟!Q~{B􄜴k? 3FCo%AQK{{eW60iYY9ӛAn2|>(uM"ɱ:1(A>gg0p)Mڽڞ*) PP8ޔ05-mU\]wMyK@2eKjC&+CNnOPH/g"q]\a泎` .4 З;kOF=eA1 ODeӋШ ?wM]=XM}Ϭ1[gtW3ezLe;4(@cڋ1s9W1#1\nѨ  *UI8$^IߩI>'zL 'zL'' ^Z/$p#🉡LKgF)1eYkL<4*t sBf[u$n愶o8lqQZG2y{g Qd$y]7,,Դ෱7n cAn&tB@c DQn+< O7۵m2|[Q7QϿ}ݤ eQZ )o4jMxq(M7i=Hl3Z ͟ivv=zLW=ZdezLhUZ@愶:Wn{w4Vf>ӈg77WʭsC(?~ABDC|pNEFGHemIJKLMNOPRSTQUVMw{XW[YZ}^`]b_\afcegkijhlmponq$drlytuwvxyzs|}~{)3->=X_[r7#A9KGUQist24TkmgaQ"͗P,؀WldAsYYdw,jM;?gq(7]Cϒ# XIiMﱖk4E/ }YTveE^+jnMvHUn_{fEħ`WrOJv-w'=U.؀F-7Wwd?M`mѳh&&U_쨘=9MemQA5^';t<~ ޿joNTw+x3{pˎ<Y{qW(]1/jMJS.Oi<Ԃ&0NZĕ!-)TEUL܋y!{LZs&0 L-n*[kr\p/dG Sjz^5{LZs=OvjZpy*o6DeGM40৩iS h^ \rjϒY.j:t xۀ!*\AkZs'B;Y/GWE{DY Nڑ%DrH;*r)&-Ѻʇ[rUn_{fEħ`WrOJvؘʉIsAZjܚ=V5Trԅr'|${vox_nƿo- w  Go[8y/[8pe[8wIo`ҳ#`RD8+m;dbʚJ@pv M҂ʵ\Ŵ"bZAh/@!4r݂K`RD8K("6\W]wlQDF .pnH\Bӊ4iEz h.m|XZr \|5.j1ٱE¨ʲԽV>4TkmgaQ"͗P,؀WldAsYYdwv߿GAUSSRED.002   "!#$%&p(')*+,-/.10l2345768:9`;=><@?BADCoEFGIHLJKM~NQOPR@UTVSWX[Y]Z_\`a^b cdefgNbnBjklmioprsuthnwqzy|x}{v~fc H^hdk}%GAJKQMYU_[eigjus{y| (#-)3.74=ӌBټ٥~D̓-ChA˪p̠Yw!0 A:1y I f}óJ?_|݆ [Ot$KV ż#7Zߑ+C1oh[ůUːZh=[1=*%!%w=WAJ(:ځT9}h^i9Ve4&wʐ9[~?`|Gaelإ~q1,CI dԆv _O[%*NL/91v4roh[ / |wv/Y?_()_7V7Zߑ+CN$;?j׍٥~Ḋ-myg(nM[ (+X,:S5꟟JS̱mcz9 w y9kHQr ֠~9JޅpuǍ 9D|8сBqs`+XJ L@[ ӵ)2+X/oJS̱c&??Ŷ-!*~@7dNI_+F%>|ڍ5*Aa`!Fy4+>]nUxVdш#_жӇZ> %Ačև-m`:G?@ο9V@+tsE>@bgh;re|ȕa bwʐygqc?exLo#'ϟH~Lo޹.} 7ZϘTтZc7Zψ,_j2ȍW7ve"ADœw2T6i<*yY4~]7ٶzPTնZ֍KT-Cfotٝ[~:瑫>\@ ?瑫>N,-[ONnUkH@~V0VH=jgnb%lҹotq?JQȶ__{m-+DǺo>lm9Ce7ZO[%*N Q?z=7Zoܐż3~;7ZOʪVFy4+e &t5ZV'ה#OU3ZFeȜ9oܐyƏ_><䵉Vܾt+y+jů&ѸmmZIY~pվ8[ݶ>p1_~:[;ߡ _JV{> gd~p/R t}qm }S,l VN5XPo[VW;~7Ce.YL/ I^Y=6YV-N8Ti ?m@`oACBEDGF|HINJKLMNlOQPRT@VSXWYUZ[^]\_`ab dbcehgjfinymBnoqlspkrtuxvwzy|{~}tfdXe}Hhkw{(JLKQMZU_[gjisr #)%.-3274=%hV GbIPоaaaH:ߣs>FciuYWKԱ.2COљ+m ګ:c4rI::_\_fbh'Z_),WڬRv_s0|ͺ۞XZlח*:YӯБagտY|G쉪YsC#uvCP;J}%XP0zRgFߗ^Ћ?uG.tyQûEk ^B}F^+4d7ΕYWG_n/s|%] VԌ޵g/j][pJ[|_W Y"fǓ!߶90wmy\tyF^!9Gfuv~[g،޵.j][pE][p-f!B;5$L*fB#АIJYWr:ߣs/uWLB̨][pF޵gy $ WhRS~SgkF ڂ5-7B#c2dBgRcF ڂS5-^W Yr\SLrՁ17'?̈ V=7ϳ)&%D+XYw;`EZ˚j_w2p|uѩĄ-{ _*+SmV[Lx%~yQP 8KT h*1W10o )0mLG2Q[yPpMX">1Wn&LR*Y#06m pMŽЍ17˧pǭTV,yKQaBR܅nr aiyJQ.G @L2tpөsq%FI I p\񀆇EZ:J[|_Wv=kMATMULTD.002  p !#"$%&'(*),+-/.0o12l347586:9;=<?>@ANCBDF HEJGLIMNOKMPSQR~tTVWXZ[\Y^U_]a`bcfehgidyjcelomqrnpvuwtyskx}|~{z_uw|{} $-)37%A=G#KQ[Uis 7Q~ݻ't/i[5.?ٽDQ6)ř{˽FƌGKy"/1N'z{GKvV;bHٗa|}~xc?`eFKp`wsݻQvGz E n%mߚk-2\fnvX#Qc+ Kw(<5`?Zz5p}ׅQbHm]%p]\N8V5wgcׅQƞ?r%p]fBzN8V}qB]0]x_npz 3 8]0٤Btwa..FS3{X(Fz E dX3\rk8;ثQ.k:..c|I*N~\ˈe.Dz|ޗ,p(2.Dz|o,pك?b]0]x_n0ۺ K5OMۛ?p~FYS_5|s{D2ۛ? ׅ;Y|=p]-1tO8^7\Ĩ\wK5|\nv6(++r ۛ?-刁뢶 %|]\[s ޗ\f6yuQ[>... }9 z 7("p]&ɔ2q EmJ༲%^qBqŨyjH : %5|s{D2+ ׅ>p>k0AL&`۠衴O&OugR۠l4(vu7mLoP~]Angw =J'6RA6^p3[bJ5OM7 }wK52\nv3[b鰉KUJlc4(\nvcb+nv74(vfwݶ{oP.s]%kʔp>|IۚlA1OG9G><3 %<٢e&A>Ϋ^2mmPwgX>8<ѵ֠h [d| kFz5,|&,ɴ'{)jPvU(<-<6挡Wm)KI,(Zs'/NjN-2\#u6t!#|&,ɴ'&`ef[nI?OnqZ|ݒnHk B8ۊVD4=&;\suO8OnI?OnIt#!uAf_S3RV;>F¬v#ћFi]myn䆄IzW >~m%$rk8;ثQ.k:..c|I*N~\ˈe.Dz|ޗ,p(2.Dz|vhMATINV.002   ! "$#%&('*)+,.-o/012345678:9;~><?=A@|NBCDEFGM{eHIJKLwpNPOMQTSUVWRZYX^[\]f_m`$y}dbcahgfeijlmnoqrpskltvyw{|~}uzx7>irt#9-?KAQ_Ugkhs Zq)A lfXv`sZ}^.kՎMh ߌOmPV Z\Kq0|dκqv=Ó'Р\z@9b?' _3\Œ`${-!5uO1rXv\:/!Y=CXc*I'&2|-gj6zħ.vd5 ,>U/L eUkv-J·o.z@0Q%Ye~bw(:{B _j[2YpO|Kf_bƒ:v+(R%xZNh{Z,8K 1Z|/ oT2|]Nj.Xl9>fGk}9>ubݗmV E^o.r_>|]NjH|źrS|%7jL)jR7[χ!5/\sbi%=e|9<Ͻ ̾p.'{`5$.' ,>Mg$.' ̾p߂4YUbg]U׺V-!_p*f_؉STV$9ľ0t 0\^F5 j9Z_$|poA'5R*oPU;yv/|Z{|l<X IOcՏת$.Va}^.U֥ 5M,u{9$M4Ҏi""XФwL_-O IQ_P"?T H(/* qW"2"2"2x&/ZD|тqähEb zA*0SAE*FK׬r|>ź/kݭGAn \JKտ '|=Ր(}9>u_>yKnԐ*SԤn_Y=Ck:f_Ė4K{sxl{}3t lfXv`sZ}^.kՎMh ߌOmPV Zv#aMATINVD.002w   !p"#$%&')(+*o,-./01l3245678:9;<?>A=B@CDFEHGI~JLOMKNSPTRQVYUZX[]W\NcY`abd_efihjgmclnopqkutvsr^ %Mt#-)3=7GAKQXU_isu}ytiH ^±slBBDb)]v|vvSu@;"@:{tMc5vMFW5zMKg7U#'y1Tkk6ݮeǶE n^SZ6n>8NXeeO~rޱe/:{|NS+zG%z){|+S+vȚ6h9a#62.a#6hv1$L:;ͬ {Mjx-+,{ Gᎈd%Z:Z9V> w;TaD "}T9_ei7W^Y!؋T|4w-+OX$;:g".CGٸ>y"nRܳ2ܑcT39?׻vrI{T^B+OTw^o{e^uj6 wQS{\$=;wG{ifroS>Gk*PƛZfMu|: oB;?Od=Z=;tsSL|k'qi}{l/蛪+9_k\&uS…Dcrn.{t@;Eܳ.vvS$pG\̝ {n~s'={#iN̝RA܃t/Dg"unh)O{v4U`=w@;…c.{XS= h go^SZF_4Gҿ\6={Ax#}ηM#۹q~O|} pA: 5SG^#ҾΖ~x}i=g5ee|HCL5yC{ 푿aޓ5u=TȾ}}/TRwCK:[B#Շ՝ú'kP#;u!1/li_'F31{ ]SZF?)_e>8NXeeO~rޱe/:{|N5 GAUSS ELIMINATI PROGRAM N EQS IN N UNKNOWNS 8 ENTER THE AUGMENTED MATRIX OF COEFFICIENTS BY ROW 2 PUT\AUGMENTED MATRIX,UPPER DIAGAL MATRIX, 7( SOLUTI VECR, DETERMINANT OF THE N BY N MATRIX 2 "INPUT NO OF EQS : ",N < AN,N1) F E11E60 P D1 Z R1 N d "INPUT ROW NO",R,":", n C1 N1 x 1 AR,C)  C\\ R "THE AUGMENTED MATRIX IS:" - I1 N\ J1 N1\AI,J),\ J\\ I + WARD ELIMINATI, SEARCH PIVOT ROW C1\R1 PAR,C) P1R  IR N  AI,C))P)  PAI,C)\P1I  I  ERCHANGE ROWS  P)E1   P1R ,  DD  KC N1 *" BAP1,K)\AP1,K)AR,K)\AR,K)B\ K , NMALIZE PIVOT 6 DDP $@ KC N1\AR,K)AR,K)P\ K J RN  T COLUMN REDUCTI ^ I1R1 N\BAI1,C) h B)E1 | -r KC N1\AI1,K)AI1,K)AR,K)B\ K | I1  RR1\CC1\ $ "DET IS 0, NO UNIQUE SOLUTION"   BACK SUBSTITUTI % "THE UPPER DIAGONAL MATRIX IS:" - I1 N\ J1 N1\AI,J),\ J\\ I  K1 N1\ J1 K 4 ANK,N1)ANK,N1)ANK,N1J)AN1J,N1)  J\ K  "THE SOLUTION VECTOR IS:"  I1 N\AI,N1),\ I\  "THE DETERMINANT IS",D  @A/APAAP@$B A AFffgAdPA335@'I PA9A@A@Af wu\6j;0z t~2tHvvp0|~x~p0~vtr0>z2{zT|yY^@@v|fx@wVP2;zRr r ^z\f6vp4v_pr~trP@:~tr 6&6R6P0v<|0r0~|RP0R,d7~p27pP4w2pP2 ?k/!e㳗Gb!/{Ow@ 3'Aπ!aA`A ɭ͡ЀQ!P۽@တˇvdGAUSSELD.002}   !p#"$'%(&)l*+,.-/0132546o789<:=;?@ABCD>GEIF~HJLNKMPOSRQTVNWUYZ\X`]_^ [caHdcegfkihjnmblqrusotyx{w|zpv%^}#-4=7GAMKQ3YU[)_ekius{y|9tP+rԠP#=2ѽe.Hh4bJ,IdъZ7jMۨ79"/N/reNBie\૎಩exH{l[>HdnjPO[m5K'98}c;>Bc)r5='qN)K3v:5vk}y $XP'?5v/sy1֗d}[8!spC'D{Cλ5{y,ө!9xm[^\k縥BR\75e\zVkP|qr[*G7zȹBD,||g2s}!+Ԕn>伯5!;PZ>xy_5q 5vq2݈̓)J̝<^j!X_bO _u!uolcoCQ5!c)؈!)=}js&>žwqX?Xo4xgqw|9:׍ A5ӅCž9Lp$CR\'}e<߳ORq]Ɂ;ŘX>x9޲~'8svK4R4MH/vrfsC)J񖻱x0냓Y|ȹ51 jCλ89s?F8^P;9sN; 5Muid. jOY;fo Xq[!{Mk}pq5^9F_bljwŷqF,>kaubΫ/<ΗN+Z`m}5#HI03sp(b>5='qN)K3v:5vk}y $XP'?5v/sy1֗d}[8!spC'v5FFT.002   !" #%$'&)(*,-+.0/214o568397p:;<@>=?BCAED~GHFILJOKPNQMSRTWVU\XY[Z|N4ea_^`bcfe]hdjgiolmpqklnr9Mtwy{tuxvyw{s}|z~rOk#u}!3)7`nc^S>ıX-Nýv{ŭ:҇8O!g6pk}!>wO'^:!ZV%Rq,B k ج5x RHL'ȇIexr"VMb9Ĵb B~Y\zI␸iq%x  ܆_| 9X*ߓ# f÷'}'։i&a Lq%. ;4_+&6,M9qy) M-KS =y!qȇ)fڷbF˸Íe3M[bV@5߮[,MséXmu,n!ǸiGM<}:}| ?m O;.{ozN .V`wh1!dj0zMޮ63{+V!=.>>LMCP1BK0z{B:ü=dPYYCHn1w2[Kk{{׽GB&dn1Teפޭ=i^~bvd.sc|{,i|_ôx 5-}yWZVc<ϖSj:ya:y 5< u_Aj92[en6ٞO ib;/o5[m`YYú.eW䋘S٩%sNL|m&lп>Kޭۀ/̖%ujI2-$:uJ29_-ԩ%tݩSi&M?i$ZAj:y -gl6-Դx -tr?2zXe/<&[s{~l/JU={t !B X Hy㞍0~b$qo>`nc^SvHSYNDIV.002j  !"# %$'&()+*-,.0/214356o79;8<:=>A@?NC~EDB|GpHIJKMLPOFNQRTSyVWYXZ[_]^`ab\cgedfihU})#1-97KA[Ub_ierltsG<}e+oz<۟>c$47{[1MlTLw >뷔7FyέQA;_-ϭQn5Ϲ5jq5jw >-EΌΩyN^-ۻӾ-)-ny|rˋ:LhkvPGQS jWJ9QTX3(~e>)ḵWwfL=^xs#47wfLzxWzx&a` zdح#ۓa zaCkX.} S\ipza_Cװ< z./3mM1߮L05eKPgΚbP{RAhp:(v OT J]s\a=.e~ |k=[OXE{e>  : !+,au,ACS]aVrA/hr'Ob]) WPJ1]) ԙJcYE~+ʠdf~ʸ>|W4NWkLOug5|tG&{Q5db  !"# %$'&()? THE FOLLOWING STATEMENT BY OSBNE & ASSOCIATES IS QUOTED A FROM CREATIVE COMPUTING MAGAZINE, MAYJUNE 1978, PAGE 122.  *( A STATEMENT OF POLICY 2 << OSBNE & ASSOCIATES IS PUBLISHING A SERIES OF BOOKS 4F PROVIDING BASIC SOURCE INGS DOCUMENTATI "P BUESS PROCESG PROGRAMS. Z ?d ALL OF THE BASIC PROGRAM BOOKS THAT WE HAVE AVAILABLE 7n CURTLY SCHEDULED COPYRIGHT THE ED WD LY, THEY 9x SPECIY EXCLUDE PROTECTI OF THE MAGNETIC SURFACE. B THIS MEANS THAT WE ARE, IN EFFECT, PLACING THE MACHINEABLE A M OF THE SOFTWARE IN THE PUBLIC DOMAIN WHILE RETAINING ALL ; RIGHTS THE HUMANABLE M OF THE PROGRAMS. YOU ARE 8 TAKE ANY PROGRAMS OF OUR BOOKS USE, MODY, : RESELL THEM WITH AUTHIZATI, ROYALTY, LICENSE, = BUT YOU CAN GIVE AWAY SELL ANY PTI OF THE PROGRAMS 1 IN HUMANABLE M. THE ED SOURCE INGS ARE + PROTECTED THE LAST OF ABLE CODE. & "PERMUTATIONS AND COMBINATIONS"  ! "(ENTER 0 TO END PROGRAM)" %( "TOTAL NUMBER OF OBJECTS? ", N ; TEST OF PROGRAM < N0  F "SIZE OF SUBGROUP? ", D 9Y SIZE OF SUBGROUP CAN BE LARGER THAN SIZE OF GROUP Z DN d "SUBGROUP TOO LARGE" n x ( ' S 130 200 COMPUTE PERMUTATIS P 1 C 1  I ND1 N 9 D'T ALLOW NUMBER SIZE OVERFLOW MACHINE CAPACITY  9.9E62IP & "MORE THAN 9.9E62 PERMUTATIONS"   P P I  I 0 COMPUTE ERMEDIATE FACRIAL COMBINATIS  J 2 D C CJ  J  P, " PERMUTATIONS"  PC, " COMBINATIONS"    RESTART PROGRAM  (  bbbbbb ALGITHM AS SUPPLIED DOES HLE EQUALITY < CSTRAS ACCDING OSBNE & ASSOCIATES. / "THIS PROGRAM IS JUST REMARKS. LIST IT."  ^agSCOb;e`ZUɚ "MANN-WHITNEY U-TEST"  2 SET MAXIMUM SAMPLE SIZE XM), YN) WHERE = MMAXIMUM SIZE OF SAMPLE 1, NMAXIMUM SIZE OF SAMPLE 2  X25), Y25) ( N2) 1 THE TWO SAMPLES 2 I 1 2 < "SAMPLE",I,":" F " SIZE ", NI) Z J 1 NI) d " DATA ", J, n YJ) x J  ST EACH SAMPLE  J 1 NI)  K 1 NI)J C YK)  D YK1)  YK)YK1)  YK) YK1)  YK1) C  K  J  & TRANSFER FIRST SAMPLE XARRAY  I2   J 1 N1)  XJ) YJ)  J  I  ADD UP RANKS  R 1 " I 0 , J 0 6 I I 1 @ J J 1 J IN1) D T JN2) l ^ XI)YJ) l h YJ)XI) N 4q S 370570 HLE EQUAL SCES FROM BOTH SAMPLES r K 2 | M I  L J  R1 2R 1  R R 2  I I 1  J J 1  IN1)   XI)XI1)   I I 1    JN2) &  YJ)YJ1) &  J J 1  R1 R1 R  R R 1  K K 1   & X X IM)R1K 0 Y Y JL)R1K : J D JN2)  N Y Y R X J J 1 b  l X X R v I I 1  R R 1  J A U1 NUMBER OF TIMES SAMPLE 1 SCES PRECEDE SAMPLE 2 SCES ) U1 N1)N2) N1)N1)1)2 X A U2 NUMBER OF TIMES SAMPLE 2 SCES PRECEDE SAMPLE 1 SCES ) U2 N1)N2) N2)N2)1)2 Y  ) "FIRST SAMPLE PRECEDING, U = ", U1 * "SECOND SAMPLE PRECEDING, U = ", U2  g'ggggOgGgf/g_gedf/7gA0A0A@A@A`ApAAAA/?g APAPA`ApAAAAB + "MEAN, VARIANCE, STANDARD DEVIATION"  1 "WHICH METHOD (0=POPULATION, 1=SAMPLE)", S 12 "KIND OF DATA (0=GROUPED, 1=UNGROUPED)", K #F "NUMBER OF OBSERVATIONS ", N Z R 0 d M 0 n P 0 x K1  GROUPED  I 1 N  "ITEM, FREQUENCY ",I, A, B  ACCUMULATE ENTERED UES  R R BA , ACCUMULATE ERMEDIATE UES VARIANCE  P P B  M M BA2  I CALCULATE MEAN VARIANCE R RP  V MPR2) PS)  RESULTS 6  UNGROUPED  I 1 N  "ITEM ", I,  D  ACCUMULATE ENTERED UES  P P D ,  ACCUMULATE ERMEDIATE UES VARIANCE  M M D2  I #! CALCULATE MEAN VARIANCE, " R PN , V MNR2) NS) 6 ? RESULTS 2@ " MEAN VARIANCE STANDARD DEVIATION" J R, 12), V, 26), V) T ] RESTART PROGRAM %^ "MORE DATA (1=YES, 0=NO)? ", S r S1  | % "GEOMETRIC MEAN AND DEVIATION"  . "(TO END PROGRAM ENTER 0 OBSERVATIONS)" #( "NUMBER OF OBSERVATIONS ", N ; TEST OF PROGRAM < N0 E COMPUTE WHICH ROOT USE F P 1N P M 1 Z I 1 N d "ITEM ", I, n D w ITERATIVELY COMPUTE MEAN x M MDP , ACCUMULATE ERMEDIATE TERM DEVIATI  Q Q D)2  I  COMPUTE DEVIATI ) R QN1)NN1)M))2)))  "GEOMETRIC MEAN = ", M " "GEOMETRIC DEVIATION = ", R   RESTART PROGRAM (  bbbab b(bffg@A@hApA AYRB#hwAISHER SEE 7 THE 'ICE' THIS DISK) DESERVES AT LEAST THAT REWARD.  3 THE FOLLOWING PROGRAMSNS) 6 ? RESULTS 2@ " MEAN VARIANCE STANDARD DEVIATION" J R, 12), V, 26), V) T ] RESTART PROGRAM %^ "MORE DATA (1=YES, 0=NO)? ", S r S1  |  "BINOMIAL DISTRIBUTION"   M3) !( "(TO END PROGRAM ENTER 0)" 2 "NUMBER OF TRIALS? ", N F N0  'P "EXACT NUMBER OF SUCCESSES? ", X +d "PROBABILITY OF SINGLE SUCCESS? ", P w COMPUTE THE FACRIALS x M1) N M2) X  M3) N X  I 1 3  MI)0 A 1  J 1 MI) A AJ  J  MI) A)  I 5 UG THE COMPUTED FACRIALS COMPUTE PROBABILITY 6 R M1) M2) M3) XP) NX)1P)) A "PROBABILITY OF ", X, " SUCCESSES IN ", N, " TRIALS = ", R   2  VbNb^bb6bFbfb>b/GIAi1G@uA Affg@@A`A@AQ@G_gJ_)7LZ+~hn2"~*ϊBx*X#p~NS) 6 ? RESULTS 2@ " MEAN VARIANCE STANDARD DEVIATION" J R, 12), V, 26), V) T ] RESTART PROGRAM %^ "MORE DATA (1=YES, 0=NO)? ", S r S1  |  "POISSON DISTRIBUTION"  ! "(TO END PROGRAM ENTER 0)" "( "CALCULATED FREQUENCY? ", L ; PROGRAM? < L0 F "TEST FREQUENCY? ", X Y COMPUTE FACRIAL Z A 1 d I 1 X n A AI x I  COMPUTE PROBABILITY A A)  A L XL) A) 1 "PROBABILITY OF ", X, " OCCURRENCES = ", A   RESTART PROGRAM (  kasa[aca A'pU@0A M2) M3) XP) NX)1P "NORMAL DISTRIBUTION"  % "(0=STANDARD, 1=NON-STANDARD)" $( "WHICH TYPE OF VARIABLE? ", S < S0 x /E S 70 110 REQUEST NSTARD VARIABLE F "MEAN? ", M Z "STANDARD DEVIATION? ", S n x S 1  ) "(TO END PROGRAM ENTER X = 99999)"  "X = ", X  PROGRAM?  X99999 " # ADJUST NSTARD VARIABLES  X XM)S & COMPUTE FREQUENCY YCODINATE) ! R 0.5X2)2.5066282746  "FREQUENCY = ", R Z X 1 APPROXIMATE PROBABILITY AREA UNDER CURVE)  T 1 1 0.33267X)) = T 0.5 R0.4361836T 0.1201676T2 0.937298T3) " ADJUST NEGATIVE VARIABLES  Z0 T 1 T  "PROBABILITY = ", T   " bNS) 6 ? RESULTS 2@ " MEAN VARIANCE STANDARD DEVIATION" J R, 12), V, 26), V) T ] RESTART PROGRAM %^ "MORE DATA (1=YES, 0=NO)? ", S r S1  |  g'ggggOgGgf/g_gedf/7gA0A0A@A@A`ApAAAA/?g APAPA`ApAAAAB + "MEAN, VARIANCE, STANDARD DEVIATION"  1 "WHICH METHOD (0=POPULATION, 1=SAMPLE)", S 12 "KIND OF DATA (0=GROUPED, 1=UNGROUPED)", K #F "NUMBER OF OBSERVATIONS ", N Z R 0 d M 0 n P 0 x K1  GROUPED  I 1 N  "ITEM, FREQUENCY ",I, A, B  ACCUMULATE ENTERED UES  R R BA , ACCUMULATE ERMEDIATE UES VARIANCE  P P B  M M BA2  I CALCULATE MEAN VARIANCE R RP  V MPR2) PS)  RESULTS 6  UNGROUPED  I 1 N  "ITEM ", I,  D  ACCUMULATE ENTERED UES  P P D ,  ACCUMULATE ERMEDIATE UES VARIANCE  M M D2  I #! CALCULATE MEAN VARIANCE, " R PN , V MNR2) NS) 6 ? RESULTS 2@ " MEAN VARIANCE STANDARD DEVIATION" J R, 12), V, 26), V) T ] RESTART PROGRAM %^ "MORE DATA (1=YES, 0=NO)? ", S r S1  | % "GEOMETRIC MEAN AND DEVIATION"  . "(TO END PROGRAM ENTER 0 OBSERVATIONS)" #( "NUMBER OF OBSERVATIONS ", N ; TEST OF PROGRAM < N0 E COMPUTE WHICH ROOT USE F P 1N P M 1 Z I 1 N d "ITEM ", I, n D w ITERATIVELY COMPUTE MEAN x M MDP , ACCUMULATE ERMEDIATE TERM DEVIATI  Q Q D)2  I  COMPUTE DEVIATI ) R QN1)NN1)M))2)))  "GEOMETRIC MEAN = ", M " "GEOMETRIC DEVIATION = ", R   RESTART PROGRAM (  bbbab b(bffg@A@hApA AYRB#hwAISHER SEE 7 THE 'ICE' THIS DISK) DESERVES AT LEAST THAT REWARD.  3 THE FOLLOWING PROGRAMSNS) 6 ? RESULTS 2@ " MEAN VARIANCE STANDARD DEVIATION" J R, 12), V, 26), V) T ] RESTART PROGRAM %^ "MORE DATA (1=YES, 0=NO)? ", S r S1  | ! "STUDENT'S T-DISTRIBUTION"  . "(TO END PROGRAM ENTER A T-VALUE OF 0)" ( "T-VALUE? ", T < T0 T F "DEGREES OF FREEDOM? ", D Z X 1 d Y 1 n T T2 )w COMPUTE UG INVERSE SMALL TUES x T1 S Y R D Z T S D R Y Z 1T  J 29S  K 29R & COMPUTE UG APPROXIMATI MULAS 4 L 1K)Z13) 1 J) KZ23) J)  R4  J X 0.51L0.196854 L0.115194 L0.000344 L0.019527))))4  X X100000.5)10000  "  L L10.08L4R3)  $! ADJUST INVERSE WAS COMPUTED " T1 X 1 X 6 "RIGHT TAIL VALUE = ", X @ J ( T bbbbbbbbbbT I 1 C ^ "COLUMN ",I h J 1 R q P ECTED CELL UE r P AJ)V2I)L w X I J1)C ={ USE YATES CRECTI INUITY IN 2 x 2 CHISQUARE TESTS | R2  } C2  !~ Y V1X) P) 0.5)2P   )& "STUDENT'S T-DISTRIBUTION TEST"  ? LIMIT SAMPLE SIZE PN,2) WHERE N MAXIMUM SAMPLE SIZE  P10,2) ( V2), R2), M2), D2) 2 "TEST 1: MEAN = X" E< "TEST 2: MEAN = MEAN, STANDARD DEVIATION = STANDARD DEVIATION" FF "TEST 3: MEAN = MEAN, STANDARD DEVIATION <> STANDARD DEVIATION" P "WHICH HYPOTHESIS? ", T d 0m PUT IN 1 2 SAMPLES DEPING HYPOTHESIS n I 1 T1)1 x VI) 0 DI) 0  "SAMPLE ",I,":" % " NUMBER OF ELEMENTS? ", RI)  J 1 RI)  " ELEMENT ", J, PJ,I)  ACCUMULATE SAMPLES  VI) VI) PJ,I)  DI) DI) PJ,I)2  J  COMPUTE ERMEDIATE UES  MI) VI)RI) - VI) DI) VI)2RI)) RI) 1)  I   T2 T  T3 | *! PUT IN GIVEN UE FIRST HYPOTHESIS " "VALUE OF MEAN? ", M 55 COMPUTE T DEGREES OF DOM FIRST HYPOTHESIS 6 A M1)M) R1)V1)) @ B R1) 1 J  5S COMPUTE T DEGREES OF DOM SECD HYPOTHESIS +T A M1) M2)) 1R1) 1R2)) ^ B R1) R2) 2 1h A A R1)1)V1) R2)1)V2))B) r  5{ COMPUTE T DEGREES OF DOM THIRD HYPOTHESIS 1| A M1) M2)) V1)R1) V2)R2)) " B V1)R1) V2)R2))2 B B B V1)R1))2R1)1) V2)R2))2R2)1)) 2  B B 0.5)   "T-VALUE = ", A) ! "DEGREES OF FREEDOM = ", B  ffjfffRfre:ff"f/ CC "F-DISTRIBUTION"  / "(TO END PROGRAM ENTER AN F-VALUE OF 0)" ( "F-VALUE? ", F < F0 T .F "DEGREES OF FREEDOM IN NUMERATOR? ", D1 0Z "DEGREES OF FREEDOM IN DENOMINATOR? ", D2 n X 1 )w COMPUTE UG INVERSE SMALL FUES x F1 S D1 T D2 Z F S D2 T D1 Z 1F  J 29S  K 29T . Y 1K)Z13)1J) KZ23)J)  T4  N X 0.5 1 Y0.196854 Y0.115194 Y0.000344 Y0.019527))))4  X X100000.5)10000  "  Y Y1 0.08Y4T3)  $! ADJUST INVERSE WAS COMPUTED " F1 X 1 X 56 "PERCENTILE = ", 1X, ", TAIL END VALUE = ", X @ J ( T bbbbb T  T3 | *! PUT IN GIVEN UE FIRST HYPOTHESIS " "VALUE OF MEAN? ", M 55 COMPUTE T DEGREES OF DOM FIRST HYPOTHESIS 6 A M1)M) R1)V1)) @ B R1) 1 J  5S COMPUTE T DEGREES OF DOM SECD HYPOTHESIS +T' "LINEAR CORRELATION COEFFICIENT"   "NUMBER OF POINTS? ", N 2 J 0 < K 0 F L 0 P M 0 Z R 0 !c ENTER CODINATES OF POS d I 1 N n "X,Y OF POINT ", I, x X, Y ! ACCUMULATE ERMEDIATE UES  J J X  K K Y  L L X2  M M Y2  R R XY  I  CALCULATE COEFFICIENT, 0 R2 NR JK) NL J2)NMK2))  * "COEFFICIENT OF CORRELATION = ", R2   "LINEAR REGRESSION"  $ "NUMBER OF KNOWN POINTS? ", N 2 J 0 < K 0 F L 0 P M 0 Z R2 0 &c LOOP ENTER CODINATES OF POS d I 1 N n "X,Y OF POINT ", I, x X,Y ! ACCUMULATE ERMEDIATE SUMS  J J X  K K Y  L L X2  M M Y2  R2 R2 XY  I COMPUTE CURVE COEFFICIENT # B NR2 KJ) NL J2)  A K BJ) N  ( "F(X) = ", A, " + (", B, " * X )" ! COMPUTE REGRESSI ANALYSIS  J B R2 JKN)  M M K2N  K M J   R2 J M 2 "COEFFICIENT OF DETERMINATION (R^2) = ", R2 -" "COEFFICIENT OF CORRELATION = ", R2) ', "STANDARD ERROR OF ESTIMATE = ", 1 N2 KN2)) 0 6 >? ESTIMATE YCODINATES OF POS WITH ENTERED XCODINATES 4@ "INTERPOLATION: (ENTER X = 0 TO END PROGRAM)" J "X = ", X ] RESTART PROGRAM? ^ X0  h "Y = ", ABX r | J  cccccccccccB# "MULTIPLE LINEAR REGRESSION"  < SET ARRAY LIMITS XN1), SN1), TN1), AN1,N2)  X9), S9), T9), A9,10) $( "NUMBER OF KNOWN POINTS? ", N -< "NUMBER OF INDEPENDENT VARIABLES? ", V P X1) 1 Z I 1 N d "POINT ", I n J 1 V +w ENTER INDEPENT VARIABLES EACH PO x " VARIABLE ", J, XJ1)  J ( ENTER DEPENT VARIABLE EACH PO ' " DEPENDENT VARIABLE? ", XV2) 3 POPULATE A MATRIX BE USED IN CURVE FITTING  K 1 V1  L 1 V2 AK,L) AK,L) XK)XL)  SK) AK,V2)  L  K  SV2) SV2) XV2)2  I > STATEMENTS 250 500 FIT CURVE BY SOLVING THE SYSTEM OF ! AR EQUATIS IN MATRIX A)  I 2 V1  TI) A1,I)  I  I 1 V1 " J I V1 , AJ,I)0 T 6 J @ "NO UNIQUE SOLUTION" J * T K 1 V2 ^ B AI,K) h AI,K) AJ,K) r AJ,K) B | K  Z 1AI,I)  K 1 V2  AI,K) ZAI,K)  K  J 1 V1  JI   Z AJ,I)  K 1 V2  AJ,K) AJ,K) ZAI,K)  K  J  I   "EQUATION COEFFICIENTS:" !  " CONSTANT: ", A1,V2)  I 2 V1 ( "VARIABLE(", I1, "): ", AI,V2) & I 0 P 0 : I 2 V1 *D P P AI,V2)SI) TI)S1)N) N I X R SV2) S1)2N b Z R P l L N V 1   I P R 1 "COEFFICIENT OF DETERMINATION (R^2) = ", I 5 "COEFFICIENT OF MULTIPLE CORRELATION = ", I) ' "STANDARD ERROR OF ESTIMATE = ",  L0 ZL)) 0  A ESTIMATE DEPENT VARIABLE FROM ENTERED INDEPENT VARIABLES 0 "INTERPOLATION: (ENTER 0 TO END PROGRAM)"  P A1,V2)  J 1 V  "VARIABLE ", J,  X  TEST OF PROGRAM  X0 *  P P AJ1,V2)X  J !  "DEPENDENT VARIABLE = ", P    * hgjGjOjWj_j7jwjjgg?jUgoj/j2 ApAPBXB/2 P "NTH-ORDER REGRESSION"  $ SET ENSIS IN STATEMENT 30 B A2D1), RD1,D2), TD2) WHERE D MAX DEGREE OF EQUATI  A13), R7,8), T8) ( "DEGREE OF EQUATION? ", D $< "NUMBER OF KNOWN POINTS? ", N P A1) N !Y ENTER CODINATES OF POS Z I 1 N d "X,Y OF POINT ",I, n X,Y *v S 180 200 POPULATE MATRICES WITH w A SYSTEM OF EQUATIS x J 2 2D1  AJ) AJ) XJ1)  J  K 1 D1 RK,D2) TK) YXK1)  TK) TK) YXK1)  K  TD2) TD2) Y2  I > S 210490 SOLVE THE SYSTEM OF EQUATIS IN THE MATRICES  J 1 D1  K 1 D1  RJ,K) AJK1)  K  J  J 1 D1  K J D1  RK,J)0 @ " K , "NO UNIQUE SOLUTION" 6  @ I 1 D2 J S RJ,I) T RJ,I) RK,I) ^ RK,I) S h I r Z 1 RJ,J) | I 1 D2  RJ,I) ZRJ,I)  I  K 1 D1  KJ   Z RK,J)  I 1 D2  RK,I) RK,I) ZRJ,I)  I  K  J  + " CONSTANT = ", R1,D2)  EQUATI COEFFICIENTS  J 1 D . J, " DEGREE COEFFICIENT = ", RJ1,D2)  J  ! COMPUTE REGRESSI ANALYSIS  P 0 & J 2 D1 ,0 P P RJ,D2) TJ) AJ)T1)N) : J D Q TD2) T1)2N N Z Q P X I N D 1 l v J PQ 1 "COEFFICIENT OF DETERMINATION (R^2) = ", J , "COEFFICIENT OF CORRELATION = ", J) & "STANDARD ERRO OF ESTIMATE = ",  I0 0 ZI)  3 COMPUTE YCODINATE FROM ENTERED XCODINATE 0 "INTERPOLATION: (ENTER 0 TO END PROGRAM)"  P R1,D2)  "X = ", X  X0   J1 D  P P RJ1,D2)XJ  J  "Y = ", P     fhhiih.i6i=gihhi&i/F`A'CEx0FFuH/h AE331AwB "GEOMETRIC REGRESSION"  $ "NUMBER OF KNOWN POINTS? ", N 2 J 0 < K 0 F L 0 P M 0 Z R2 0 'c ENTER CODINATES OF KNOWN POS d I 1 N n "X,Y OF POINT ", I, x X,Y ! ACCUMULATE ERMEDIATE UES Y Y) X X)  J J X  K K Y  L L X2  M M Y2  R2 R2 XY  I , CALCULATE COEFFICIENTS OF EQUATI # B NR2 KJ) NL J2)  A K BJ) N  "F(X) = ", A), "*X^", B # CALCULATE REGRESSI ANALYSIS  J BR2 JKN)  M M K2N  K M J  " R2 JM 2, "COEFFICIENT OF DETERMINATION (R^2) = ", R2 -6 "COEFFICIENT OF CORRELATION = ", R2) '@ "STANDARD ERROR OF ESTIMATE = ", E N2 0 KN2)) J 4S ESTIMATE YCODINATE FROM ENTERED XCODINATE 0T "INTERPOLATION: (ENTER 0 TO END PROGRAM)" ^ "X = ", X r X0  | "Y = ", A)XB   ^  ccccccccccc`A H2WA "EXPONENTIAL REGRESSION"  $ "NUMBER OF KNOWN POINTS? ", N 2 J 0 < K 0 F L 0 P M 0 Z R2 0 'c ENTER CODINATES OF KNOWN POS d I 1 N n "X,Y OF POINT ", I, x X,Y ! ACCUMULATE ERMEDIATE UES Y Y)  J J X  K K Y  L L X2  M M Y2  R2 R2 XY  I , CALCULATE COEFFICIENTS OF EQUATI # B NR2 KJ) NL J2)  A K BJ) N   "A = ", A)  "B = ", B # CALCULATE REGRESSI ANALYSIS  J BR2 JKN)  M M K2N  K M J  " R2 JM 2, "COEFFICIENT OF DETERMINATION (R^2) = ", R2 -6 "COEFFICIENT OF CORRELATION = ", R2) '@ "STANDARD ERROR OF ESTIMATE = ", E N2 0 KN2)) J 4S ESTIMATE YCODINATE FROM ENTERED XCODINATE 0T "INTERPOLATION: (ENTER 0 TO END PROGRAM)" ^ "X = ", X r X0  | "Y = ", A)BX)   ^  cccccccccccpAI!A00 "SYSTEM RELIABILITY"  ! "(TO END PROGRAM ENTER 0)" %( "OPERATING TIME IN HOURS? ", T ; TEST OF PROGRAM < T0 "F "NUMBER OF COMPONENTS? ", N Z Z 0 c ENTER EACH COMPENT d I 1 N n "COMPONENT ", I $x " AVERAGE WEAROUT TIME? ", W $ " AVERAGE FAILURE RATE? ", F + INCLUDE EACH COMPENT IN RELIABILITY  Z Z 1W F  I   CALCULATE RELIABILITY,  Z ZT) ! "SYSTEM RELIABILITY = ", Z   RESTART PROGRAM (  baaaba@AS5)@PAD=ENEROUS POLICY OF THE PUBLISHER SEE 7 THE 'ICE' THIS DISK) DESERVES AT LEAST THAT REWARD.  3 THE FOLLOWING PROGRAMS 4S ESTIMATE YCODINATE FROM ENTERED XCODINATE 0T "INTERPOLATION: (ENTER 0 TO END PROGRAM)" ^ "X = ", X r X0  | "Y = ", A)BX)   ^  cccccccccccpAI!A00vREMARKS.002   !p"$#o%'&)(*+,l-/.1032546798:<;N=>A@C?DBEFGHKIJLMNOPQRUSWTZX[V]Y\^`_ab{9cfegihjkdlmunprquowtxvzs{|}~y}~HS[%crx MWRa_keq4>6KDUQY^\fjisyv !)#, - 1/73=ACBFG-'YU=X6/>d57'}#8z~`EӨjλEğhM>7kiRƵ~RZ8N,rt&E=r~2h)nNrinz8NU=XR1h)6Z[Rg󮥸9۷Tpx&yZT/l޴rjҽ>~fܢ-ŕ~R$﵋f~)LUnOup ,&,n -yH?I_Sp$@@,.ՃO-ϕ|8'P|Ikk1Д!8?Io-M>|Շ6ǿK󮥸9{@Kq+E&x/vSgW s}˥9Ο0V/We1ğ~}(Is)n0Z&6Ս(ɄH;ФRܜPz^FU KJQh=(&~M_]kvgS\?_p'y$s}ȬKqyFx)n-^C\#Z˿',ϩ^~='|jRMirZSv9WA?I_ܠ៤vК2sǘJ gɟ#֔Aq ~2W5utК e%8p/n '"֔%5vaSdYI taКdOe%)LCkXNe%)LyAК245vPk_o,+IaλzZSc)gz )[ dKVe%)LyQ/Кeeg [,+Iat6KqsuH1Fx)_hc${#7{k~)~K{ P$݊v-ŵ<|8qsTp+6yG?<|yuTp.~ņ7QsJ-ޱSyLqv{ P$-,OI9< }J^gkλZK#i5?iz^:Щ1'[ve]Vyxdz0Rw|6ZS:v%"l޵N6ZN~^]U;ryypN xՁN9Rෛw-=yxdz0Rk'wbSͩ^l~ն^e3-hc4cqlvɋwָe.߳\*)'}#*6Zixyqy`Sc.WsqxWnhzL*?N[ hq+~h=\hR"=m^gR+G)طY8/g<NS_m--dFay͛ŷ.W|%(c6'Duk ֽkXlNҶDit {0I8fsrܵk^e5lٜ-g-aG-pW| 'c6'%:L%h*aD_;~ {p(Ŏ_kn*ap–肰k^e5LٜDZDo8Qq`l lN^7oxuٜ4`Fo8^^e,c6'z u xuZ& lN~D?Љp8cݫl 1Z7v8cݫl1K^`q͑Ze<,[/U6_1Mu7y^l1e(3ӫl1ф؝jy mUGuw*hٜ%&vH%gG/N`bG宲2&c6˩ g\j*:rns~*/pfI+xkqmUGuw*˸,9_m[ލ_i׏Y~b͗(Y6~vXwuDXk>ޟ.%,8V|1<{6?E3?V| lr&}?ULO?=γSyr`ݏHҫl1eJ͎gobH>tss.:[٫lB8fLYtsQR<Rҫl$2~W]Ԟ8wNEq.l,_Ď& u6FGP]4t,YQ1ƝJ"/wtvWj/)_7(GzU6_d QlJe`l lN^v(NOTICE.BAS2   o !"#$&%(')*-+,/0.1{ܹ@0pk{+*hĘģcf:*w?.Ȋro\o_Qo#WkZQ[S#ԞqļDZa\}=(͞ ܛ6u..cOܛ6}.Њroܹ@KM<:ffzӯ?^Mww~,q7E7{.ЖjOw N{E{Q{DmsǽTty8ŽWëv E7M|.Њr/ɝg%1aXUh[nr'Le|iu&(ʽ$ǝ6D5v)CXd+& #wk& FQ%3vs|C> |c°U|ġKrf@נNj}8P-J& kJ hEQ%9Sghc°5' ˟~̛>> {5(3br'>a{vfXhc°< m0ßi`E̝#On,B۝?2?O,q7ӞyV{I y,pa턡#G7n6O/jE@[ FwUS؅n,}~LW^#>m=M;O@3M,vx4„ay.v NE?@[.lY2;ib1E›JҫvNS-STATS.DOCm  !"#$%&('*)+-,.o/012346578:9;=<>@?ABCDFEGHIJLK MONRPQSrTU VWZX[Y\ ^]Q_`ScafgdebVjlikh263K;u ,Aw(I)VtK:8zUp|:U PH"͓ś7{;jׄ)mLH"-wl6{k 7eM$J16,N︁{,n~ƈCa؝ FH"˩ƒplҨspBCPEmX( A\ȅ>6BPPrP*~-jC6B?",Y&dvq jVqq]#DYN.Jjni ۸spV>[sC\, l⫇XUC[s8)>Juv["fx:ϥvKAtK{rImn#{ "C)ev6(K ,!zj06V}wM=nb E#lC*eH\ OOpu*΋ŧe=7V, LWwƒ=ۅcc](7,"#lN}Uj!F[E!4T>fO!C4^9_[s8QOOr P\ȸG}uAgxZ@==-Zm(^U ܨEpl"4P. Ê W'  F B"$r*Ў[*T4Q8Q/+:ܸ@*SpMTDI$=Akl`&B$;fw[W 5z&mYN%r@'w=D[n7m|zcġ0 Tt݅K@$fkok';qSVND#85f;SoV&\\OT9gf""jׄ),Ǔ5H`KfY,o5-gf"=Vfk:` >]>]QOHx,ov}fH"605'KV;6~Ol`&R.v}ffyM? }\oVϛOfTH6?e['ot$%^!?}6Vݛ+[ŸId0YM?oY.kpW"c߿Ms\lj,FQ9h=eeѿM"m +Bښ~5q'+mYn3`5֏?$ܦ:fe&6'?$~XG?:x?$~uYD<:q>b&6{G=G?۬q"m#mYn{G&voo%t"mQ7|D\k L)<$Q#,oo 76,)܎*)<$fގ 49#M9&6g|<y"F,fy۽YVO sKV7"˩ծ 6s '*O@'k<|ɪٟ~۽;G,Qӻl8Ѳ:&'G5wYqD,OV8UYEHFٟ~,cTn`!Qӻl Ѳ:MO#=kNFq,OV8_U;dS_5rj,Y 6sݛqrfX].y=9DSsYϷYowM{,R)Tw"˩x^ne75?o?oYN-ઁ7DX͛ś]q <͈!8yS_ g݊)l4=k|t펓rjcӛ;S@Y@歂8Bd95d_xӼǓ`\5Zrj絥Z嬊LɎ=M#DS;kNo8h]@'k|}Ɉ,б駻ݛqry;x]'z_O?] Mgc5"˩G574.j?Yd ovǓ5dDScX8B$D $fyz=ל`\;ݙUq?zudDv ]QXpW+ƈC8Pƀ-B${=ל^H"mN`wfU\